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AUTOMATIC CONTINUED FRACTIONS
ARE TRANSCENDENTAL OR QUADRATIC

 Y BUGEAUD

A. – We establish new combinatorial transcendence criteria for continued fraction expan-
sions. Letα = [0; a1, a2, . . . ] be an algebraic number of degree at least three. One of our criteria implies
that the sequence of partial quotients (a`)`≥1 of α is not ‘too simple’ (in a suitable sense) and cannot
be generated by a finite automaton.

R. – Nous établissons de nouveaux critères combinatoires de transcendance pour des dé-
veloppements en fraction continue. Soit α = [0; a1, a2, . . . ] un nombre algébrique de degré au moins
égal à trois. L’un de nos critères entraîne que la suite (a`)`≥1 des quotients partiels de α n’est pas trop
simple (en un certain sens) et ne peut pas être engendrée par un automate fini.

1. Introduction and results

A well-known open question in Diophantine approximation asks whether the continued
fraction expansion of an irrational algebraic number α either is ultimately periodic (this
is the case if, and only if, α is a quadratic irrational), or contains arbitrarily large partial
quotients. As a preliminary step towards its resolution, several transcendence criteria for
continued fraction expansions have been established recently [1, 4, 5, 9] (we refer the reader
to these papers for references to earlier works, which include [23, 14, 27, 12]) by means
of a deep tool from Diophantine approximation, namely the Schmidt Subspace Theorem
(see Theorem 2.1 below). In the present note, we show how a slight modification of their
proofs allows us to considerably improve two of these criteria. We begin by pointing out two
important consequences of one of our new criteria. Thus, we solve two problems addressed
and discussed in [1] and we establish for continued fraction expansions of algebraic numbers
the analogues of the results of [3] on the expansions of algebraic numbers to an integer base.

Throughout this note, A denotes a finite or infinite set, called the alphabet. We identify
a sequence a = (a`)`≥1 of elements from A with the infinite word a1a2 . . . a` . . . , as well
denoted by a. This should not cause any confusion.
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For n ≥ 1, we denote by p(n,a) the number of distinct blocks of n consecutive letters
occurring in the word a, that is,

p(n,a) := Card{a`+1 . . . a`+n : ` ≥ 0}.

The functionn 7→ p(n,a) is called the complexity function of a. A well-known result of Morse
and Hedlund [24, 25] asserts that p(n,a) ≥ n + 1 for n ≥ 1, unless a is ultimately periodic
(in which case there exists a constant C such that p(n,a) ≤ C for n ≥ 1).

Our first result asserts that the complexity function of the sequence of partial quotients
(a`)`≥1 of an algebraic number

[0; a1, a2, . . . , a`, . . . ] =
1

a1 +
1

a2 +
1

. . .

of degree at least three cannot increase too slowly.

T 1.1. – Let a = (a`)`≥1 be a sequence of positive integers which is not ultimately
periodic. If the real number

[0; a1, a2, . . . , a`, . . . ]

is algebraic, then

(1.1) lim
n→+∞

p(n,a)

n
= +∞.

Theorem 1.1 improves Theorem 7 from [12] and Theorem 4 from [1], where

lim
n→+∞

p(n,a)− n = +∞

was proved instead of (1.1). This gives a positive answer to Problem 3 of [1] (we have chosen
here a different formulation).

An infinite sequence a = (a`)`≥1 is an automatic sequence if it can be generated by
a finite automaton, that is, if there exists an integer k ≥ 2 such that a` is a finite-state
function of the representation of ` in base k, for every ` ≥ 1. We refer the reader to
[13] for a more precise definition and examples of automatic sequences. Let b ≥ 2 be an
integer. In 1968, Cobham [19] asked whether a real number whose b-ary expansion can
be generated by a finite automaton is always either rational or transcendental. A positive
answer to Cobham’s question was recently given in [3]. We addressed in [1] the analogous
question for continued fraction expansions. Since the complexity function of every automatic
sequence a satisfies p(n,a) = O(n) (this was proved by Cobham [20] in 1972), Theorem 1.1
implies straightforwardly a negative answer to Problem 1 of [1].

T 1.2. – The continued fraction expansion of an algebraic number of degree at least
three cannot be generated by a finite automaton.

The proofs of Theorems 1.1 and 1.2 rest ultimately on a combinatorial transcendence
criterion established by means of the Schmidt Subspace Theorem. This is also the case for
the similar results about expansions of irrational algebraic numbers to an integer base, see
[3, 10].
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Before stating our criteria, we introduce some notation. The length of a word W on the
alphabet A, that is, the number of letters composing W , is denoted by |W |. We denote the
mirror image of a finite word W := a1 . . . a` by W := a` . . . a1. In particular, W is a
palindrome if, and only if, W = W .

Let a = (a`)`≥1 be a sequence of elements from A. We say that a satisfies Condition (∗) if
a is not ultimately periodic and if there exist three sequences of finite words (Un)n≥1, (Vn)n≥1

and (Wn)n≥1 such that:

(i) For every n ≥ 1, either the wordWnUnVnUn or the wordWnUnVnUn is a prefix of the
word a;

(ii) The sequence (|Vn|/|Un|)n≥1 is bounded from above;
(iii) The sequence (|Wn|/|Un|)n≥1 is bounded from above;
(iv) The sequence (|Un|)n≥1 is increasing.

Equivalently, the word a satisfies Condition (∗) if there exists a positive real number ε
such that, for arbitrarily large integers N , the prefix a1a2 . . . aN of a contains two disjoint
occurrences of a word of length [εN ] or it contains a word U of length [εN ] and its mirror
image U , provided that U and U do not overlap. Here and below, [·] denotes the integer part
function.

We summarize our two new combinatorial transcendence criteria in the following theo-
rem.

T 1.3. – Let a = (a`)`≥1 be a sequence of positive integers. Let (p`/q`)`≥1 denote
the sequence of convergents to the real number

α := [0; a1, a2, . . . , a`, . . . ].

Assume that the sequence (q
1/`
` )`≥1 is bounded. If a satisfies Condition (∗), then α is transcen-

dental.

Theorem 1.3 is the disjoint union of two transcendence criteria. A first one applies to
stammering continued fractions, where the terminology ‘stammering’ means that in (i) the
word WnUnVnUn is a prefix of the word a for infinitely many n; see Theorem 3.1. A second
one is concerned with quasi-palindromic continued fractions, where the terminology ‘quasi-
palindromic’ means that in (i) the word WnUnVnUn is a prefix of the word a for infinitely
many n; see Theorem 5.1. The condition that the sequence (q

1/`
` )`≥1 has to be bounded

is not very restrictive, since it is satisfied by almost all real numbers (in the sense of the
Lebesgue measure). Furthermore, it is clearly satisfied when (a`)`≥1 is bounded. Note that
this condition can be removed if a begins with arbitrarily large squares UnUn (Theorem 2.1
from [9]) or with arbitrarily large palindromes UnUn (Theorem 2.1 from [5]).

Theorem 1.3 encompasses all the combinatorial transcendence criteria for continued frac-
tion expansions established in [1, 4, 5, 9] under the assumption that the sequence (q

1/`
` )`≥1

is bounded.
Let a be a sequence of positive integers. If there exist three sequences of finite words

(Un)n≥1, (Vn)n≥1 and (Wn)n≥1 such that lim supn→+∞ |Wn|/|Un| is sufficiently small and
a satisfies Condition (∗), then the transcendence of [0; a1, a2, . . . ] was already proved in
[1, 9, 5]. The novelty in Theorem 1.3 is that we allow |Wn| to be large, provided however that
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the quotients |Wn|/|Un| remain bounded independently of n. This is crucial for the proofs
of Theorems 1.1 and 1.2.

At present, we do not know any transcendence criterion involving palindromes for expan-
sions to integer bases; however, see [2].

We end this section with an application of Theorem 3.1 to quasi-periodic continued
fractions.

T 1.4. – Consider the quasi-periodic continued fraction

α = [0; a1, . . . , an0−1, an0 , . . . , an0+r0−1︸ ︷︷ ︸
λ0

, an1
, . . . , an1+r1−1︸ ︷︷ ︸

λ1

, . . . ],

where the notation means that nk+1 = nk + λkrk and the λ’s indicate the number of times a
block of partial quotients is repeated. Let (p`/q`)`≥1 denote the sequence of convergents to α.
Assume that the sequence (q

1/`
` )`≥1 is bounded. If the sequence (a`)`≥1 is not ultimately periodic

and

(1.2) lim inf
k→∞

λk+1

λk
> 1,

then the real number α is transcendental.

Theorem 1.4 improves Theorem 3.4 from [4], where, instead of the Assumption (1.2), the
stronger condition lim infk→∞ λk+1/λk > 2 was required.

2. Auxiliary results

We gather below several classical results from the theory of continued fractions. Standard
references include [26, 22, 29].

Let α := [0; a1, a2, . . . ] be a real irrational number. Set p−1 = q0 = 1 and q−1 = p0 = 0.
For ` ≥ 1, the `-th convergent toα is the rational number p`/q` := [0; a1, a2, . . . , a`]. Observe
that

(2.1) q` = a`q`−1 + q`−2, ` ≥ 1.

Furthermore, the sequence (q`)`≥1 is increasing and q` and q`+1 are coprime for ` ≥ 0.

The theory of continued fraction implies that (see e.g., Theorem 164 of [22])

(2.2) |q`α− p`| < q−1
`+1, for ` ≥ 1,

and

(2.3) q`+h ≥ q`(
√

2)h−1, for h, ` ≥ 1.

Indeed, an easy induction on h based on (2.1) proves (2.3) for every fixed value of ` ≥ 1.

Likewise, an induction based on (2.1) allows us to establish the mirror formula

(2.4)
q`−1

q`
= [0; a`, a`−1, . . . , a1], ` ≥ 1.

The main tool for the proof of Theorem 1.3 is the Schmidt Subspace Theorem.
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