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THREE-DIMENSIONAL ORBIFOLDS AND
THEIR GEOMETRIC STRUCTURES

Michel Boileau, Sylvain Maillot, Joan Porti

Abstract. — Orbifolds locally look like quotients of manifolds by finite group actions.
They play an important rôle in the study of proper actions of discrete groups on
manifolds. This monograph presents recent fundamental results on the geometry and
topology of 3-dimensional orbifolds, with an emphasis on their geometric properties.

Résumé (Les orbivariétés tridimensionnelles et leurs structures géométriques)
Une orbivariété est localement le quotient d’une variété par un groupe fini. Cette

notion joue un rôle important dans l’étude des actions propres de groupes discrets
sur les variétés. Cette monographie présente des résultats fondamentaux récents sur
la géométrie et la topologie des orbivariétés de dimension 3, en mettant l’accent sur
leurs propriétés géométriques.
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INTRODUCTION

In this book, we present important recent results on the geometry and topology
of 3-dimensional manifolds and orbifolds. Orbifolds are natural generalizations of
manifolds, and can be roughly described as spaces which locally look like quotients
of manifolds by finite group actions. They were introduced by I. Satake, under the
name V-manifold, and their importance in dimension 3 emerged from the work of
W.Thurston, who used them as tools for geometrizing 3-manifolds. Orbifolds occur
in many contexts, for instance as orbit spaces of group actions on manifolds, or as
leaf spaces of certain foliations.

A basic idea behind geometrization is the concept of uniformization, which for us
means studying a manifold M by putting a structure on its universal cover M̃ that
is preserved by the action of the fundamental group π1M . If the structure is rigid
enough, this gives information about M . More specifically, we shall call geometry a
homogeneous, simply-connected, unimodular Riemannian manifold, and say that a
manifold is geometric if it is diffeomorphic to the quotient of a geometry by a discrete
subgroup of its isometry group.

It has been known since the beginning of the twentieth century that every compact
surface is geometric: more precisely, it is either elliptic, Euclidean or hyperbolic,
i.e. can be obtained as the quotient of the round 2-sphere S2, the Euclidean plane E2,
or the hyperbolic plane H2 by a discrete group of isometries.

Some important properties of surfaces, e.g. linearity of the fundamental group, can
be deduced from this fact. Geometric structures on surfaces can also be used to attack
more difficult and subtle problems such as studying mapping class groups. Moreover,
the Gauss-Bonnet formula provides a strong link between geometry and topology in
dimension 2.

In dimension 3, it is fairly easy to see that not every manifold is geometric. How-
ever, it was W.Thurston’s groundbreaking idea that the situation should be almost



2 INTRODUCTION

as nice: any compact 3-manifold should be uniquely decomposable along a finite col-
lection of disjoint embedded surfaces into geometric pieces. This is the content of
his Geometrization Conjecture, formulated in the mid seventies, and which we shall
state more precisely in Chapter 1. Positive solutions of many important problems in
3-manifold topology, including the famous Poincaré Conjecture, as well the Universal
Covering Conjecture, or residual finiteness of 3-manifold groups, would follow from
the Geometrization Conjecture.

Thurston observed that there are only eight 3-dimensional geometries: those of
constant curvature S3, E3, and H3; the product geometries S2 ×R and H2 ×R; the
twisted product geometries Nil and S̃L2(R), and finally Sol. Among geometric man-
ifolds, those modelled on H3 remain the most mysterious. Thus the Geometrization
Conjecture reduces in principle any problem on 3-manifolds to combination theorems
and understanding hyperbolic manifolds. Hence Thurston’s work entailed a shift of
emphasis from the purely topological (combinatorial) methods of the 50’s and 60’s to-
ward geometric methods. It not only offers an approach to old topological problems,
but also motivates the study of geometric ones. In particular, it renewed Kleinian
group theory, which before Thurston was mainly considered from the point of view of
complex analysis, by bringing hyperbolic geometry and topology into it. This is still
an active field of research.

The Geometrization Conjecture is known to hold in various cases. The first break-
through was Thurston’s Hyperbolization Theorem, which covers an important and
fairly general class of 3-manifolds called Haken manifolds. Since knot exteriors are
included in this class, this result had spectacular applications to knot theory, leading
for instance to the solution of the Smith Conjecture.

The Geometrization Conjecture is also true for prime 3-manifolds whose fundamen-
tal group contains a subgroup isomorphic to Z×Z, by combining the result mentioned
above with the full version of the Torus Theorem, including the solution of the Seifert
Fiber Space Conjecture. Lastly, it is known for a class of ‘manifolds with symmetries’,
i.e. manifolds with finite group actions satisfying certain properties. The geometriza-
tion of these manifolds is reduced to the geometrization of the quotient orbifolds,
which is the content of the Orbifold Theorem.

The main purpose of this book is to present those results and some of the ideas
and techniques involved in their proofs. Some parts are covered in detail, while others
are only sketched. We have tried to give a hint of the various methods and of the
various parts of mathematics they draw ideas from: this includes geometric topology,
algebraic and differential geometry, and geometric group theory. At several points
we indicate connections with other fields in the form of short surveys, references to
the literature or open questions. We also supply some background material that is
scattered in the literature or missing from it.

PANORAMAS & SYNTHÈSES 15



INTRODUCTION 3

The classification of the eight homogeneous 3-dimensional geometries is given in
Chapter 1. Chapter 2 provides background material for orbifold theory. The existence
of the canonical decomposition is established in Chapter 3, while in Chapter 4 we
present the fundamental properties of the class of Haken orbifolds. Chapter 5 is
concerned with a homotopic characterization of Seifert fibered orbifolds, which is an
important case of the Geometrization Conjecture. Chapter 6 is devoted to hyperbolic
orbifolds and Thurston’s Hyperbolization Theorem for Haken Orbifolds. In Chapter 7
we discuss the basic properties of representation varieties and the Culler-Shalen theory
of ideal points of curves. Chapter 8 deals with Thurston’s construction of hyperbolic
manifolds by Dehn filling and the structure of the set of volumes of hyperbolic 3-
orbifolds. Finally, a proof of the Orbifold Theorem in a special case is outlined in
Chapter 9.

We do not present here G.Perelman’s recent breakthrough in R.Hamilton’s pro-
gram for proving the Geometrization Conjecture using the so-called Ricci flow equa-
tion. This approach relies on techniques from differential geometry and global analysis
which are outside the scope of this book.
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für Mathematik ETH Zürich for inviting him to give lectures on some related material
during a semester in 1998/99 and Diego Rattagi for taking notes of these lectures.
The second author wishes to thank his parents for constant support and affection,
and the geometry and topology group at UQAM (Université du Québec à Montréal)
for providing a stimulating atmosphere during part of the time this book was written.
He acknowledges support from a CRM-CIRGET fellowship. The third author was
partially founded by the Spanish MCYT through grant BFM2003-03458 and by the
Catalan DURSI through grant ACI1000-17.
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CHAPTER 1

THURSTON’S EIGHT GEOMETRIES

In this chapter we present Thurston’s Geometrization Conjecture and explain its in-
teraction with some important problems in the topology and geometry of 3-manifolds.
We also give the classification of the eight homogeneous 3-dimensional geometries in-
volved in the Geometrization Conjecture.

By Moise’s Theorem [147] each topological 3-manifold admits a unique piecewise
linear (PL) or smooth structure. Hence throughout this monograph we will work in
the category of differentiable manifolds.

1.1. The Geometrization Conjecture

Recall that a Riemannian manifold X is called homogeneous if its isometry group
Isom(X) acts transitively. We call X unimodular if it has a quotient of finite volume.

A geometry is a simply connected, complete, homogeneous, unimodular Rie-
mannian manifold satisfying the following maximality condition: there is no
Isom(X)-invariant Riemannian metric on X whose isometry group is strictly larger
than Isom(X). Two geometries X,X ′ are equivalent if there is a diffeomorphism
φ : X → X ′ conjugating Isom(X) and Isom(X ′). Notice that φ is not required to be
an isometry, nor even a homothety.

Let X be a geometry. If Γ is a discrete subgroup of Isom(X) acting freely, then the
quotient space X/Γ is a smooth manifold with a natural Riemannian metric which
is locally isometric to X . If the action is not free, then the quotient has a natural
orbifold structure, as we will see in Chapter 2.

Let M be a smooth manifold (possibly with boundary). We say that M admits an
X-structure if IntM is diffeomorphic to some quotient X/Γ as above. A manifold is
geometric if it admits an X-structure for some geometry X .

A geometry X is isotropic if Isom(X) acts transitively on the unit tangent bundle
T1X . Intuitively, this means that X looks the same in every direction. This condition
is equivalent to requiring that X has constant sectional curvature. A classical result
in Riemannian geometry (see e.g. [220]) asserts that in every dimension n � 2, there
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are exactly three isotropic geometries up to equivalence. These are the n-sphere Sn,
Euclidean n-space En and hyperbolic n-space Hn, with constant sectional curvature
equal to respectively +1, 0, and −1. The fact that these spaces are unimodular is
obvious for Sn (which is compact) and En (which for each dimension n admits as
compact quotient the n-torus Tn = En/Zn). This is nontrivial for Hn (see e.g. [24,
210]).

A n-manifold is called spherical (resp. Euclidean, resp. hyperbolic) if it has a Sn-
structure (resp. a En-structure, resp. a Hn-structure). For closed manifolds, these
three situations are mutually exclusive. Indeed, if M is spherical, then π1M is finite,
so M cannot be Euclidean or hyperbolic. If M is Euclidean, then a theorem of
Bieberbach (again see [220]) asserts that π1M has an abelian subgroup of finite
index, which implies that M cannot be hyperbolic.

The situation in dimension 2 is very special. Indeed, the three isotropic geometries
are the only ones; furthermore, every closed surface is geometric, i.e. either spher-
ical, Euclidean, or hyperbolic. This last fact can be proved by direct construction
once one knows the classification of surfaces, or deduced from the Poincaré-Koebe
Uniformization Theorem (see the discussion in [20]).

The fact that a closed surface F cannot have two structures modelled on inequiv-
alent geometries admits a more elementary proof than the one quoted above for
isotropic geometries in general dimension n. Indeed, it is a direct consequence of
the Gauss-Bonnet formula χ(F ) =

∫
F
K ds, where χ(F ) is the Euler characteristic.

The situation is therefore particularly nice: F is elliptic if and only if χ(F ) > 0 (this
gives S2 and RP2), Euclidean if and only if χ(F ) = 0 (this gives the 2-torus T2 and
the Klein Bottle K2), and hyperbolic otherwise. We shall see in Chapter 2 a more
general statement for 2-dimensional orbifolds (cf. Theorem 2.10).

In dimension 3 the situation is more complicated. Beside the three isotropic geome-
tries (S3,E3,H3), there are five anisotropic 3-dimensional geometries: four geometries

are straight line bundles over S2,E2 or H2 (S2 ×E1,Nil,H2 ×E1, S̃L2(R)), and one
geometry is modelled on the only simply connected unimodular Lie group Sol which
is solvable, but not nilpotent. This classification is explained in Section 1.2.

Thurston’s fundamental idea is that geometry should take a central part in the
study of compact, orientable 3-dimensional manifolds, through decompositions of
these manifolds into canonical geometric pieces. He proposed the following conjecture:

Conjecture 1.1 (Geometrization Conjecture). — The interior of any compact ori-
entable 3-manifold can be split along a finite collection of essential disjoint embedded
spheres and tori into a canonical collection of 3-submanifolds X1, . . . , Xn such that
for each i, the manifold obtained from Xi by capping off all sphere components by
balls is geometric.

In the previous statement, an embedding of a closed connected surface in a compact
orientable 3-manifold M is called essential if it induces an injective homomorphism

PANORAMAS & SYNTHÈSES 15



1.1. THE GEOMETRIZATION CONJECTURE 7

of fundamental groups and if it does not bound a 3-ball nor cobounds a product with
a connected component of ∂M .

A special case of the Geometrization Conjecture is the well-known Poincaré Con-
jecture. It claims the positive answer to a question raised by Poincaré in 1904 [164],
and is one of the leading open problems in low dimensional topology.

Conjecture 1.2 (Poincaré Conjecture). — Any closed, simply-connected 3-manifold is
homeomorphic to S3.

More generally, the Geometrization Conjecture would imply that every closed,
orientable, aspherical 3-manifold is determined, up to homeomorphism, by its fun-
damental group. This is a special case of the so-called Borel conjecture and will be
discussed further in Section 4.4.

The groups which are fundamental groups of compact surfaces are known. The
Poincaré-Koebe Uniformization Theorem shows that the fundamental group of a sur-
face acts isometrically on the round sphere S2, the Euclidean plane E2 or the hyper-
bolic plane H2. This geometric action is reflected in algebraic properties of the group.
For instance, it provides solutions of the word problem and the conjugacy problem.
By contrast, any finitely presented group is the fundamental group of some compact
4-manifold.

Characterizing algebraically the class of fundamental groups of compact 3-manifolds
is still an open problem. If M is a compact orientable 3-manifold satisfying the con-
clusion of the Geometrization Conjecture, then π1M is the fundamental group
of a graph of groups whose vertices are discrete subgroups of isometries of the
3-dimensional geometries above, and edges are trivial or isomorphic to Z2. One
can deduce from this the solvability of the word and the conjugacy problems for
these groups, see [61, 168]. In general these two questions are still unsolved for the
fundamental group of a compact 3-manifold.

The topological background for Thurston’s Geometrization Conjecture is given by
a splitting of the compact, orientable 3-manifold along a finite collection of disjoint
essential spheres and tori into canonical pieces. The existence of this decomposition
is a central result in the study of 3-manifolds, which is presented in a more general
context in Chapter 3.

An orientable 3-manifold M is irreducible if any embedding of the 2-sphere into M
extends to an embedding of the 3-ball into M . This notion is crucial for the study
of topological properties of 3-manifolds. The connected sum of two orientable 3-
manifolds is the orientable 3-manifold obtained by pulling out the interior of a 3-ball
in each manifold and gluing the remaining parts together along the boundary spheres.

The first stage of the decomposition, due to H.Kneser [115] and J.Milnor [143],
expresses any compact, orientable 3-manifold M as the connected sum of 3-manifolds
that are either homeomorphic to S1 × S2 or irreducible. Moreover, the connected
summands are unique up to order and orientation-preserving homeomorphism.
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