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LOCAL COLLAPSING, ORBIFOLDS,

AND GEOMETRIZATION

Bruce Kleiner, John Lott

Abstract. — This volume has two papers, which can be read separately. The first paper

concerns local collapsing in Riemannian geometry. We prove that a three-dimensional

compact Riemannian manifold which is locally collapsed, with respect to a lower

curvature bound, is a graph manifold. This theorem was stated by Perelman without

proof and was used in his proof of the geometrization conjecture. The second paper is

about the geometrization of orbifolds. A three-dimensional closed orientable orbifold,

which has no bad suborbifolds, is known to have a geometric decomposition from

work of Perelman in the manifold case, along with earlier work of Boileau-Leeb-Porti,

Boileau-Maillot-Porti, Boileau-Porti, Cooper-Hodgson-Kerckhoff and Thurston. We

give a new, logically independent, unified proof of the geometrization of orbifolds,

using Ricci flow.

Résumé (Effondrements locaux, orbifold et géométrisation). — Ce volume contient

deux articles qui peuvent être lus séparément. Le premier concerne des effondrements

locaux en géométrie riemannienne. Nous démontrons qu’une variété riemannienne de

dimension 3 qui est localement effondrée, relativement à une borne inférieure de la

courbure, est un graphe. Ce théorème était énoncé par Perelman sans démonstration

et a été utilisé dans sa preuve de la conjecture de géométrisation. Le second article

concerne la géométrisation des orbifolds. Un orbifold fermé orientable de dimension 3
qui ne contient pas de mauvais sous-orbifolds admet une décomposition géométrique

d’après le travail de Perelman dans le cas des variétés, et d’après les travaux de

Boileau-Leeb-Porti, Boileau-Maillot-Porti, Boileau-Porti, Cooper-Hodgson-Kerckhoff

et Thurston. Nous donnons une démonstration nouvelle et unique de la géometrisation

des orbifolds, via le flot de Ricci.
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LOCALLY COLLAPSED 3-MANIFOLDS

by

Bruce Kleiner & John Lott

Abstract. — We prove that a 3-dimensional compact Riemannian manifold which is
locally collapsed, with respect to a lower curvature bound, is a graph manifold. This
theorem was stated by Perelman and was used in his proof of the geometrization
conjecture.

Résumé. — Nous démontrons qu’une variété riemannienne de dimension 3 qui est
localement effondrée, relativement à une borne inférieure de la courbure, est un
graphe. Ce théorème était énoncé par Perelman sans démonstration et a été utilisé
dans sa preuve de la conjecture de géométrisation.

1. Introduction

1.1. Overview. — In this paper we prove that a 3-dimensional Riemannian man-

ifold which is locally collapsed, with respect to a lower curvature bound, is a graph

manifold. This result was stated without proof by Perelman in [24, Theorem 7.4],

where it was used to show that certain collapsed manifolds arising in his proof of

the geometrization conjecture are graph manifolds. Our goal is to provide a proof

of Perelman’s collapsing theorem which is streamlined, self-contained and accessible.

Other proofs of Perelman’s theorem appear in [2, 5, 23, 30].

In the rest of this introduction we state the main result and describe some of the

issues involved in proving it. We then give an outline of the proof. We finish by

discussing the history of the problem.
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8 B. KLEINER & J. LOTT

1.2. Statement of results. — We begin by defining an intrinsic local scale function

for a Riemannian manifold.

Definition 1.1. — Let M be a complete Riemannian manifold. Given p ∈ M , the

curvature scale Rp at p is defined as follows. If the connected component of M

containing p has nonnegative sectional curvature then Rp =∞. Otherwise, Rp is the

(unique) number r > 0 such that the infimum of the sectional curvatures on B(p, r)

equals − 1
r2 .

We need one more definition.

Definition 1.2. — Let M be a compact orientable 3-manifold (possibly with bound-

ary). Give M an arbitrary Riemannian metric. We say that M is a graph manifold if

there is a finite disjoint collection of embedded 2-tori {Tj} in the interior of M such

that each connected component of the metric completion of M −
⋃

j Tj is the total

space of a circle bundle over a surface (generally with boundary).

For simplicity, in this introduction we state the main theorem in the case of closed

manifolds. For the general case of manifolds with boundary, we refer the reader to

Theorem 16.1.

Theorem 1.3 (cf. [24, Theorem 7.4]). — Let c3 denote the volume of the unit ball in R3

and let K ≥ 10 be a fixed integer. Fix a function A : (0,∞)→ (0,∞). Then there is

a w0 ∈ (0, c3) such that the following holds.

Suppose that (M, g) is a closed orientable Riemannian 3-manifold. Assume in

addition that for every p ∈M ,

(1) vol(B(p,Rp)) ≤ w0R
3
p and

(2) For every w′ ∈ [w0, c3), k ∈ [0,K], and r ≤ Rp such that vol(B(p, r)) ≥ w′r3,
the inequality

(1.4) |∇k Rm | ≤ A(w′) r−(k+2)

holds in the ball B(p, r).

Then M is a graph manifold.

1.3. Motivation. — Theorem 1.3, or more precisely the version for manifolds with

boundary, is essentially the same as Perelman’s [24, Theorem 7.4]. Either result

can be used to complete the Ricci flow proof of Thurston’s geometrization conjec-

ture. We explain this in Section 17, following the presentation of Perelman’s work

in [21].

To give a brief explanation, let (M, g(·)) be a Ricci flow with surgery whose ini-

tial manifold is compact, orientable and three-dimensional. Put ĝ(t) = g(t)
t . Let

Mt denote the time t manifold. (If t is a surgery time then we take Mt to be the

postsurgery manifold.) For any w > 0, the Riemannian manifold (Mt, ĝ(t)) has a

decomposition into a w-thick part and a w-thin part. (Here the terms “thick” and
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“thin” are suggested by the Margulis thick-thin decomposition but the definition is

somewhat different. In the case of hyperbolic manifolds, the two notions are essen-

tially equivalent.) As t → ∞, the w-thick part of (Mt, ĝ(t)) approaches the w-thick

part of a complete finite-volume Riemannian manifold of constant curvature − 1
4 ,

whose cusps (if any) are incompressible in Mt. Theorem 1.3 implies that for large t,

the w-thin part of Mt is a graph manifold. Since graph manifolds are known to have

a geometric decomposition in the sense of Thurston, this proves the geometrization

conjecture.

Independent of Ricci flow considerations, Theorem 1.3 fits into the program in

Riemannian geometry of understanding which manifolds can collapse. The main

geometric assumption in Theorem 1.3 is the first one, which is a local collapsing state-

ment, as we discuss in the next subsection. The second assumption of Theorem 1.3

is more technical in nature. In the application to the geometrization conjecture, the

validity of the second assumption essentially arises from the smoothing effect of the

Ricci flow equation.

In fact, Theorem 1.3 holds without the second assumption. In order to prove this

stronger result, one must use the highly nontrivial Stability Theorem of Perelman [19,

25]. As mentioned in [24], if one does make the second assumption then one can

effectively replace the Stability Theorem by standard CK -convergence of Riemannian

manifolds. Our proof of Theorem 1.3 is set up so that it extends to a proof of

the stronger theorem, without the second assumption, provided that one invokes the

Stability Theorem in relevant places; see Sections 1.5.7 and 18.

1.4. Aspects of the proof. — The strategy in proving Theorem 1.3 is to first

understand the local geometry and topology of the manifold M . One then glues these

local descriptions together to give an explicit decomposition of M that shows it to be

a graph manifold. This strategy is common to [5, 23, 30] and the present paper. In

this subsection we describe the strategy in a bit more detail. Some of the new features

of the present paper will be described more fully in Subsection 1.5.

1.4.1. An example. — The following simple example gives a useful illustration of the

strategy of the proof.

Let P ⊂ H2 be a compact convex polygonal domain in the two-dimensional hyper-

bolic space. Embedding H2 in the four-dimensional hyperbolic space H4, let Ns(P )

be the metric s-neighborhood around P in H4. Take M to be the boundary ∂Ns(C),

slightly smoothed. If s is sufficiently small then one can check that the hypotheses of

Theorem 1.3 are satisfied.

Consider the structure of M when s is small. There is a region M2-stratum, lying at

distance ≥ const. s from the boundary ∂P , which is the total space of a circle bundle.

At scale comparable to s, a suitable neighborhood of a point in M2-stratum is nearly

isometric to a product of a planar region with S1. There is also a region M edge lying

at distance ≤ const. s from an edge of P , but away from the vertices of P , which is
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10 B. KLEINER & J. LOTT

the total space of a 2-disk bundle. At scale comparable to s, a suitable neighborhood

of a point in M edge is nearly isometric to the product of an interval with a 2-disk.

Finally, there is a region M0-stratum lying at distance ≤ const. s from the vertices

of P . A connected component of M0-stratum is diffeomorphic to a 3-disk.

We can choose M2-stratum, M edge and M0-stratum so that there is a decomposition

M = M2-stratum ∪M edge ∪M0-stratum with the property that on interfaces, fibration

structures are compatible. Now M edge ∪M0-stratum is a finite union of 3-disks and

D2 × I’s, which is homeomorphic to a solid torus. Also, M2-stratum is a circle bundle

over a 2-disk, i.e., another solid torus, and M2-stratum intersects M edge ∪M0-stratum

in a 2-torus. So using this geometric decomposition, we recognize that M is a graph

manifold. (In this case M is obviously diffeomorphic to S3, being the boundary of a

convex set in H4, and so it is a graph manifold; the point is that one can recognize

this using the geometric structure that comes from the local collapsing.)

1.4.2. Local collapsing. — The statement of Theorem 1.3 is in terms of a local lower

curvature bound, as evidenced by the appearance of the curvature scale Rp. Assump-

tion (1) of Theorem 1.3 can be considered to be a local collapsing statement. (This

is in contrast to a global collapsing condition, where one assumes that the sectional

curvatures are at least −1 and vol(B(p, 1)) < ε for every p ∈M .) To clarify the local

collapsing statement, we make one more definition.

Definition 1.5. — Let c3 denote the volume of the Euclidean unit ball in R3. Fix

w̄ ∈ (0, c3). Given p ∈M , the w̄-volume scale at p is

(1.6) rp(w̄) = inf
{
r > 0 : vol(B(p, r)) = w̄ r3

}
.

If there is no such r then we say that the w̄-volume scale is infinite.

There are two ways to look at hypothesis (1) of Theorem 1.3, at the curvature scale

or at the volume scale. Suppose first that we rescale the ball B(p,Rp) to have radius

one. Then the resulting ball will have sectional curvature bounded below by −1 and

volume bounded above by w0. As w0 will be small, we can say that on the curva-

ture scale, the manifold is locally volume collapsed with respect to a lower curvature

bound. On the other hand, suppose that we rescale B(p, rp(w0)) to have radius one.

Let B′(p, 1) denote the rescaled ball. Then vol(B′(p, 1)) = w0. Hypothesis (1) of

Theorem 1.3 implies that there is a big number R so that the sectional curvature

on the radius R-ball B′(p,R) (in the rescaled manifold) is bounded below by − 1
R2 .

Using this, we deduce that on the volume scale, a large neighborhood of p is well

approximated by a large region in a complete nonnegatively curved 3-manifold Np.

This gives a local model for the geometry of M . Furthermore, if w0 is small then we

can say that at the volume scale, the neighborhood of p is close in a coarse sense to

a space of dimension less than three.

In order to prove Theorem 1.3, one must first choose on which scale to work. We

could work on the curvature scale, or the volume scale, or some intermediate scale (as
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