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MASSLESS PHASES FOR THE VILLAIN MODEL IN d ≥ 3

by Paul DARIO & Wei WU

Abstract. — A major open question in statistical mechanics, known as the Gaussian
spin wave conjecture, predicts that the low temperature phase of the Abelian spin
systems with continuous symmetry behave like Gaussian free fields. In this paper we
consider the classical Villain rotator model in Zd, d ≥ 3 at sufficiently low temperature,
and prove that the truncated two-point function decays asymptotically as |x|2−d, with
an algebraic rate of convergence. We also obtain the same asymptotic decay separately
for the transversal two-point functions. This quantifies the spontaneous magnetization
result for the Villain model at low temperatures and constitutes a first step toward a
more precise understanding of the spin-wave conjecture. We believe that our method
extends to finite range interactions, and to other Abelian spin systems and Abelian
gauge theory in d ≥ 3. We also develop a quantitative perspective on homogenization
of uniformly convex gradient Gibbs measures.

Résumé. (Phases sans masse du modèle de Villain pour d ≥ 3) – Une question ouverte
majeure en mécanique statistique, connue sous le nom de conjecture des vagues de
spins, prédit que les systèmes de spins équipés d’une symétrie abélienne continue se
comportent comme des champs libres gaussiens à basse température. Dans cet article,
nous considérons le modèle de Villain en dimension supérieure ou égale à 3 à une
température suffisamment basse, et nous démontrons que la fonction de deux points
décroît asymptotiquement comme celle d’un champ libre gaussien. Afin d’obtenir
ce résultat, nous développons une approche quantitative pour l’homogénéisation des
mesures de Gibbs sur les champs de gradients avec un potentiel uniformément convexe.
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CHAPTER 1

INTRODUCTION

1.1. Rotator models and the spin wave picture

Rotator models, such as the XY and the Villain models, have drawn considerable
attention from distinct research communities in mathematical and theoretical physics.
They are of much interest in statistical mechanics, as they exhibit new types of phase
transition for ferromagnetic systems and can be applied to the design of novel ma-
terials. A canonical rotator model is the XY model defined as follows: given a finite
set U ⊆ Zd, we assign to each function θ : U → (−π, π] satisfying θ = 0 on the
external vertex boundary ∂U the energy

HXY
U (θ) := −

∑
x,y∈U+

x∼y

cos(θ(x)− θ(y)),

where U+ := U∩∂U and the notation x ∼ y means that the points x and y are nearest
neighbor in the lattice Zd. The Gibbs measure of the XY model with zero boundary
condition at inverse temperature β > 0 is then defined the probability distribution

(1.1.1) dµXY
β,U (dθ) :=

1

ZXY
β,U

exp
(
−βHXY

U (θ)
) ∏

x∈U

dθ(x)1θ|∂U=0.

The XY model can be equivalently seen as a spin system with spin valued in the circle
S1 by setting Sx := eiθx . In this article, we will be interested in another closely related
rotator model, the Villain model [90] is defined by the Gibbs weight

(1.1.2) dµVill
β,U (dθ) :=

1

ZVill
U

∏
x∼y

vβ(θ(x)− θ(y)) dθ(x)1θ|∂U=0,

where is the heat kernel on S1 defined according to the identity

(1.1.3) vβ(θ) :=
∑
m∈Z

exp

(
−β

2
(θ + 2πm)2

)
.

The two models belong to the class of spin systems with continuous Abelian sym-
metry. They exhibit a similar behavior and have been extensively studied in the
literature. We collect below some of their main features.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



2 CHAPTER 1. INTRODUCTION

Since the spins take values in the compact space S1, the existence of a thermody-
namic limit for the XY model (i.e., an infinite-volume limit as U →∞) is guaranteed
along subsequences by standard compactness arguments. It is additionally known that
this limit is unique, and we denote it by µXY

β (see [79]). The Griffiths correlation in-
equalities [58, 25, 79] imply that that the expected value of the spins and the two-point
function are monotone in the domain U and in particular show the convergences

⟨Sx⟩µXY
β,U

−→
U↑Zd

⟨Sx⟩µXY
β

and ⟨Sx · Sy⟩µXY
β,U

−→
U↑Zd

⟨Sx · Sy⟩µXY
β

.

The same results hold for the Villain model, and we denote by µV
β the corresponding

thermodynamic limit (1).
In two dimensions, the Mermin-Wagner theorem [78] shows that there is no con-

tinuous symmetry breaking at any temperature, i.e., for any β > 0,

(1.1.4) ⟨Sx⟩µXY
β

= 0.

In particular, the system does not undergo an order/disorder phase transition. Nev-
ertheless, the system is known to exhibit a phase transition of a different type, char-
acterized by a different asymptotic behavior of the correlation function: there exists
a critical inverse temperature βc ∈ (0,∞) such that in the low temperature regime
(β > βc), the two-point function ⟨Sx · S0⟩µβ

decays polynomially fast (which charac-
terizes a so-called topological long-range order [72]), while, in the high temperature
regime (β ≤ βc), the two-point function decays exponentially fast. This phase tran-
sition is known as the Berezinskii-Kosterlitz-Thouless transition became the basis
of the Nobel prize in Physics in 2016 to Haldane, Kosterlitz and Thouless. From
a mathematical perspective, the existence of this transition was established in the
celebrated work of Fröhlich and Spencer [50], and has been the subject of recent
developments [75, 43, 4].

In the low temperature regime (β > βc), additional predictions can be made regard-
ing the behavior of the model. A simple heuristics suggests that, as the temperature
goes to zero, the spins tend to align with each other so as to minimize the Hamiltonian.
Using the approximations, when |δθ| ≪ 1,
(1.1.5)

exp(β cos(δθ)) ≈
∑
m∈Z

exp

(
−β

2
(δθ + 2πm)2

)
and cos (2π (δθ)) ≈ 1− (δθ)

2
/2,

it is expected that at low temperature, both the XY and the Villain Gibbs measures
on large scales behave like the Gaussian measure

(1.1.6) µGFF
β (dϕ) :=

1

Z
exp

(
−β

2

∑
x∼y

(ϕ(x)− ϕ(y))
2

)∏
x

dϕ(x).

1. The monotonicity of the correlation function and the uniqueness of the infinite volume Gibbs
state were first established for the XY model [79]. However, the Villain model can be represented
as a metric graph limit of the XY model [85, 50]. By taking this limit, we obtain the corresponding
monotonicity and the uniqueness of Gibbs state for the Villain model.
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1.1. ROTATOR MODELS AND THE SPIN WAVE PICTURE 3

The Gibbs measure (1.1.6) is the Gaussian free field, and its law is fully character-
ized by its covariance matrix given by the lattice Green’s function. This heuristic
computation is the starting point of the celebrated spin wave picture originating in
the work of Dyson [42] (see also [78]). The spin wave conjecture predicts that at low
temperatures both the XY and the Villain Gibbs measures behave on large scales like
a Gaussian free field of the form (1.1.6) with a notable difference: since the approxi-
mations (1.1.5) are not exact (and does not recover the information of the periodized
field in (1.1.1) and (1.1.2)), a corrective term, corresponding to the so-called vortex
lines, has to be taken into account in the analysis, and the limiting Gaussian free field
describing the large-scale behaviors of the XY and Villain models should display an
effective temperature βeff ̸= β (with βeff = (1 + o(1))β as β →∞).

More precisely, the spin wave picture in the case of the two-point function asserts
that, for d = 2 and β > βc, there exists an effective inverse temperature βeff > 0 (with
βeff ̸= β) such that
(1.1.7)〈

ei(θ(0)−θ(x))
〉

µV
β

=
〈
ei(ϕ(0)−ϕ(x))

〉
µGF F

βeff

(1 + o(1)) = |x|−
1

2πβeff + o
(
|x|−

1
2πβeff

)
.

Rigorous (but non-optimal) power law upper and lower bounds for the two-point
function were established in the 1980s in the celebrated works of McBryan-Spencer [77]
and Fröhlich-Spencer [49] in the low temperature regime, namely, for β ≫ 1,

c1|x|−
1

2πβ1 ≤ ⟨S0 · Sx⟩µV
β
≤ c2|x|−

1
2πβ ,

where β1 = β1(β) and satisfies β1 = β(1 + o(1)) as β → ∞. For a closely related
model, the two dimensional two-component Coulomb gas with small activity, Falco
justified the spin wave picture (with an effective βeff in the exponent) for all the inverse
temperatures in the Kosterlitz-Thouless phase, in a series of impressive works [45, 46].
For the two dimensional XY and Villain models, the asymptotic two point function
(1.1.7) still remains an important open question.

In three dimensions and higher, the breakthrough work of Fröhlich, Simon and
Spencer [48] shows that these models undergo an order/disorder phase transitions:
there exists an critical inverse temperature βc > 0 such that

for any β > βc, ⟨Sx⟩µβ
̸= 0 and for any β < βc, ⟨Sx⟩µβ

= 0.

In the low temperature phase (β > βc), the spin wave picture predicts that there exist
two coefficients c1, c2 such that

(1.1.8) ⟨S0 · Sx⟩µV
β

= c1 +
c2

|x|d−2
+ o

(
1

|x|d−2

)
.

Considerable progress towards quantitative information for the XY/Villain model
at low temperature were made in the 1980s. In dimensions d ≥ 3, the best known
result is the one of Fröhlich and Spencer [51] who observed that the classical Villain
model in Zd can be mapped, via duality, to a statistical mechanical model of lattice
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4 CHAPTER 1. INTRODUCTION

Coulomb gas. They obtained the following next order description of the correlation
function at low temperature.

Proposition 1.1.1 (Fröhlich and Spencer [51]). — Let µV
β be the thermodynamic limit

of the Villain model in Zd, for d ≥ 3. There exist constants β0 = β0(d), c0 = c0(β, d),
such that for all β > β0,

⟨S0 · Sx⟩µV
β

= c0 +O

(
1

|x|d−2

)
.

Moreover, denote by G the lattice Green’s function in Zd, then we have as β →∞,

exp

(
1

β
(G(0)−G(x))

)
≥ ⟨S0 · Sx⟩µV

β
≥ exp

((
1

β
+ o

(
1

β

))
(G(0)−G(x)))

)
.

This suggests that the truncated two-point function may be related to a massless
free field in Rd, which corresponds to the emergence of a (conjectured) Goldstone bo-
son. Similar results were also obtained for the Abelian gauge theory in four dimensions
(see [51, 66]). Kennedy and King in [70] obtained a similar low temperature expan-
sion for the Abelian Higgs model, which couples an XY model with a gauge fixing
potential. Their proofs rely on a different approach, via a transformation introduced
by [14] and a polymer expansion.

It is also of much interest to justify the spin wave conjecture separately for the
longitudinal and transversal two-point functions of the rotator models, i.e., observ-
ables of the form ⟨cos θ(0) cos θ(x)⟩µXY

β
and ⟨sin θ(0) sin θ(x)⟩µXY

β
. The best known

result is due to Bricmont, Fontaine, Lebowitz, Lieb, and Spencer [26], where, relies
on a combination of the infrared bound [48], a Mermin-Wagner type argument, and
correlation inequalities, they perform a low temperature expansion of the truncated
correlation function of the XY model and obtain the following expansion.

Proposition 1.1.2 (Bricmont, Fontaine, Lebowitz, Lieb, and Spencer [26]). — There ex-
ist an inverse temperature β1 < ∞ and two constants c1 > c2 > 0 such that, for
any β ≥ β1,

c2
β|x|d−2

≤ ⟨sin θ(0) sin θ(x)⟩µXY
β

≤ c1
β|x|d−2

.

Despite these considerable progress, the rigorous derivations of the spin wave Con-
jecture (1.1.8) remain largely open. The main result of our paper, stated below, iden-
tifies the next-order term for the Villain model in dimensions three and higher, by
obtaining the precise asymptotics of the two-point functions at low temperature.

Theorem 1. — For any dimension d ≥ 3, there exist β0 = β0(d) and α = α(d) > 0

such that, for any β ≥ β0, there exist constants c0 = c0(β, d), c1 = c1(β, d),
c2 = c2(β, d), and such that, for all β > β0, the transversal two-point function has
the asymptotics

(1.1.9) ⟨sin θ(0) sin θ(x)⟩µV
β

=
c2

|x|d−2
+O

(
1

|x|d−2+α

)
,

ASTÉRISQUE 447



1.1. ROTATOR MODELS AND THE SPIN WAVE PICTURE 5

and the spin-spin correlation function satisfies

(1.1.10) ⟨S0 · Sx⟩µV
β

= c0 +
c1

|x|d−2
+O

(
1

|x|d−2+α

)
.

Remark 1.1.3. — The proof of Theorem 1 yields the following characterization for the
constant c0

c0 = ⟨S0⟩2µV
β
.

Regarding the constants c1 and c2, the free field computation (1.1.5) indicates that
they should be close to the constant

C = − 1

β
exp (G(0)/β)

Γ(d/2− 1)

4πd/2
,

where Γ is the standard Gamma function. The constant C is defined so as to satisfy〈
ei(ϕ(0)−ϕ(x))

〉
µGF F

β

= exp

(
1

β
(G(0)−G(x))

)
= exp (G(0)/β)+

C

|x|d−2
+O

(
1

|x|d−1

)
.

In this direction, the proof of Theorem 1 yields the identities

c1 = C +O(e−cβ) and c2 = −C +O(e−cβ).

Remark 1.1.4. — It follows from (1.1.9) and (1.1.10) that the two-point correlation
function is asymptotically rotation invariant. Indeed, the proof yields rotation invari-
ance for the Villain Gibbs measures that are invariant under the π/2-degree rotations
and the reflections of the lattice. For more general Villain models, i.e., replacing the
potential (1.1.3) by

vβ,x,y(θ) :=
∑
m∈Z

exp

(
−βJx,y

2
(θ + 2πm)2

)
,

for strictly positive, nearest neighbor and periodic coupling constants Jx,y, one expects
the second order term to take the form of a more general (2−d)-homogeneous function.

We remark here that an alternative approach, based on elaborate renormalization
group analysis, was developed in a series of works of Balaban, and culminated in [15].
They studied a class of Euclidean field theories that are invariant under the O(N)

symmetry group, for N ≥ 2, and obtained results similar to Theorem 1 for these
models.

We conclude the introduction by mentioning two open questions. The Gaussian spin
wave approximation predicts that the two-point function of the XY model in d ≥ 3

also admits a low temperature expansion like that stated in Theorem 1. The main
challenge is a technical one: in the first step of the proof (described in Section 1.2
below), a duality transformation and a cluster expansion step are used to prove that
the model can be expressed as gradient model with a strictly convex potential (this
part of the proof follows well-known arguments [51, 16]). The specific structure of the
Hamiltonian of the Villain model (1.1.2) allows an exact factorisation (in particular,
the two-point function can be factorized as a Gaussian contribution and a vortex

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



6 CHAPTER 1. INTRODUCTION

contribution, see Section 3, (3.1.6)). Such an exact factorization does not hold for the
XY model and a new idea for renormalization is required to implement the argument.

The spin wave conjecture and the asymptotic two-point function (1.1.7) remains
open for the XY and Villain model in d = 2. The renormalization argument developed
by Falco [45, 46] does not directly apply, because by applying a duality transform to
the XY and Villain model, one obtains a lattice Coulomb gas with infinite activity
(instead of small activity). Building new insights into the renormalization group anal-
ysis, Bauerschmidt, Park and Rodriguez showed recently that the scaling limit of the
two-dimensional Discrete Gaussian at high temperature is a continuous Gaussian free
field (with an effective inverse temperature) in [17, 18]. Their result makes another
progress toward the spin-wave conjecture for the two-dimensional Villain model in
the low temperature regime (β ≫ 1). Resolving the conjecture requires extending the
results of [17, 18] to more singular test functions.

1.2. Strategy of the proof

We initiate a renormalization-Helffer-Sjöstrand-homogenization program to prove
Theorem 1. The periodic potential of the XY and Villain model makes the inter-
action highly non-convex, and poses significant challenges to study their large scale
behavior. Indeed, the ground states at zero temperature already leads to highly non-
trivial variational problems (see, e.g., [5]). To overcome these difficulties, we start
from the insight of Fröhlich and Spencer [51] (see also [16, Section 5]), applying a
duality transformation and a cluster expansion to the Villain Gibbs measure. In the
low temperature regime (β ≫ 1), this argument shows that two-point function can
be expressed as a non-linear and non-local observable of a uniformly convex gradi-
ent model (or uniformly convex ∇ϕ model). Contrary to the Villain and XY models,
tools from PDE and homogenization theory can be applied to study the behavior
over large-scales of the uniformly convex ∇ϕ model (see Section 1.2.2), which can
thus be used to study the Villain model via the duality transformation of [51]. The
general strategy described above encounters two difficulties. Firstly the convex model
is not nearest neighbor, and has an infinite-range with exponential tail. Secondly the
two-point function of the Villain model is mapped via the duality transform to a non-
linear and non-local observable (see Proposition 3.1.1). Understanding the behavior
of this observable requires a precise, quantitative theory to describe the large-scale
behavior of the convex gradient model.

This first part of the proof thus consists of applying a duality transformation and
cluster expansion to relate the Villain model to a uniformly convex ∇ϕ model. It is
the subject of Section 3 and mostly follows [51] and [16, Section 5]. The second part
of the proof consists of studying quantitatively the large-scale behavior of the convex
gradient Gibbs model and treating the non-linear, non-local observable arising from
the arguments of [51] and [16, Section 5], and is the subject of the remaining sections.

One of the main tools to study∇ϕmodel is the so-called Helffer-Sjöstrand equation,
originally introduced by Helffer and Sjöstrand [68], Naddaf and Spencer [82] and

ASTÉRISQUE 447



1.2. STRATEGY OF THE PROOF 7

Giacomin, Olla and Spohn [55] to identify the scaling limit of the model. The main
insight of [68, 82] is that the large-scale behavior of the ∇ϕ model is related to the
large-scale behavior of the solutions of an infinite-dimensional elliptic equation called
the Helffer-Sjöstrand equation. The crucial observation of [82] is that the large-scale
behavior of these solutions can be studied using techniques of homogenization.

At a high level, the proof of Theorem 1 consists of developing a quantitative ho-
mogenization theory for the Helffer-Sjöstrand equation and exploits the insights of
the following three works: the work of Naddaf and Spencer [82], that relates large-
scale behavior of the convex gradient Gibbs measure to an elliptic homogenization
problem for the Helffer-Sjöstrand equation; the quantitative theory for homogeniza-
tion by Armstrong, Kuusi and Mourrat [7, 6]; and the application of quantitative
homogenization to the ∇ϕ model by Armstrong and Wu [8]. However there is a dis-
tinct difference of our method compared to [82, 7, 8]. Firstly, the results of [82] are
qualitative, and a quantitative theory is required to understand the behavior of the
Villain model. To obtain a quantitative rate of homogenization it is crucial to have
some decorrelation of the underlying random field. In [7], a straightforward mixing
condition of the coefficient field is assumed. The argument in [8] relies on couplings
based on the probabilistic interpretation of the equation to obtain decorrelation of the
gradient field. In the present paper, we rely on the observation that this information
can be obtained by studying another infinite-dimensional equation, the second-order
Helffer-Sjöstrand equation (see [29, (2.12)] or Section 1.2.4); in particular, the decor-
relation is a consequence of the decay estimates for the Green’s function associated
with the second-order Helffer-Sjöstrand operator. We note that the second-order equa-
tion appears in the work [29], and is closely related to techniques used to develop a
quantitative theory of stochastic homogenization in [61, 62, 59, 60].

The following subsections provide a more detailed outline of the argument.

1.2.1. Sine-Gordon representation and polymer expansion. — The spin wave compu-
tation (1.1.8) is only heuristic and does not give the correct constants C1, C2. The
main problem for the spin wave heuristics (1.1.8) is that it ignores the formation of
vortices, which are defined on the faces of Zd. Kosterlitz and Thouless [72] gave a
heuristic argument, indicating that the vortices interact like a neutral Coulomb gas
taking integer-valued charges.

Our proof of Theorem 1 starts from an insight of Fröhlich and Spencer [51], which
makes this observation rigorous. In particular, the correlation function of the Villain
model in Zd, d ≥ 3 can be mapped, by duality, to a statistical mechanical model
with integer-valued and locally neutral charges on discrete 2-forms Λ2(Zd), interact-
ing with Coulomb potential (see Section 3.1). By performing a Fourier transform of
this Gibbs measure with respect to the charge variable, we obtain a helpful random
field representation of the Coulomb gas, known as the sine-Gordon representation (see
e.g., [49, 50]). When the temperature is low enough, opposite charges tend to bind
together into neutral (short range) dipoles, therefore on large scales this Coulomb gas
behaves like an effective dipole gas with a reduced effective activity of the charges.
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This can be formalized by applying a one-step renormalization argument and a clus-
ter expansion, following the presentation of [16, Chapter 5]. The renormalized Gibbs
measure (see (3.1.16)) is a vector-valued random interface model in Λ2(Zd) with infi-
nite range and uniformly convex potential. The question of the asymptotic behavior
of the Villain correlation function is thus reduced to the question of the quantitative
understanding of the large-scale properties of the random interface model.

1.2.2. Random surfaces and Helffer-Sjöstrand equation. — Our study of the large-
scale properties of the random interface model starts from the insight of Naddaf
and Spencer [82] that the fluctuations of the field are closely related to an elliptic
homogenization problem for the Helffer-Sjöstrand equation [68, 89]. This approach has
been used by Giacomin, Olla and Spohn in [55] to prove that the large-scale space-time
fluctuations of the field is described by an infinite-dimensional Ornstein-Uhlenbeck
process and by Deuschel, Giacomin and Ioffe to establish concentration properties and
large deviation principles on the random surface (we also refer to [88, 21, 22, 31, 30] for
extension of these results to some non-convex potentials, and [73] for a study of a more
general class of Hamiltonians). The strategy presented in many of the aforementioned
articles relies on a probabilistic approach: one can, through the Helffer-Sjöstrand
representation, reduce the problem to a question of random walk in dynamic random
environment, and then prove properties on this object, e.g., invariance principles,
using the results of Kipnis and Varadhan [71], or annealed upper bounds on the
heat kernel, using Delmotte and Deuschel [41]. However, the results obtained so far
using this probabilistic approach are not quantitative. A more analytical approach
was developed by Armstrong and Wu in [8], where they extend and quantify the
homogenization argument of Naddaf and Spencer [82], resolved an open question
posed by Funaki and Spohn [53] regarding the C2 regularity of surface tension, and
the fluctuation-dissipation conjecture of [55].

Besides the approach based on the Helffer-Sjöstrand equation and the random walk
representation, various techniques have been successfully used on the model. Funaki
and Spohn [53] established the hydrodynamic limit of the model relying on methods
developed in the setting of the Ginzburg-Landau equation with a conserved order pa-
rameter [65]. A renormalization group approach has been implemented in the works
of Adams, Kotecký, Müller [3] and Adams, Buchholz, Kotecký, Müller [2]. In these
contributions, the authors study the ∇ϕ model for a general class of (perturbative)
non-convex potentials (in a low temperature regime) and establish (among other re-
sults) regularity properties as well as the strict convexity of the surface tension of
the model. The articles [3, 2] differ from ours in various aspects. In [3, 2], the authors
consider a nonconvex perturbation of Gaussian, and proved after successive renormal-
izations the surface tension (i.e., the log partition function under different tilts) gains
sufficient regularity and convexity. In the present article, the gradient-type model ob-
tained from the Villain model by duality is uniformly convex, and the main difficulty
relies on the specific structure of the model: the Hamiltonian has infinite-range, the
observable we wish to study is highly non-linear and non-local. Therefore it is not
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enough to prove the Gibbs measure converges to a Gaussian free field in the scaling
limit, and we need to estimate the correlation of nonlinear functions of the field with
high precision, which we do by implementing methods from PDE and homogenization
theory.

On a high level, we follow the analytical approach, namely the program developed
in [82, 8] on homogenization for the random interface models. Since the sine-Gordon
representation and the polymer expansion give a random interface model valued in
the vector space R(d

2) with long range and uniformly convex potential, an application
of the strategy of Naddaf and Spencer [82] to this model leads to the Helffer-Sjöstrand
operator

(1.2.1) L := −∆ϕ + Lspat,

which is an infinite-dimensional elliptic operator acting on functions defined in the
space Ω×Zd where Ω is the set of functions ϕ : Zd → R(d

2) (see (3.4.4) for the precise
definition of this operator), where Ω is the space of functions from Zd to R(d

2) in
which the vector-valued random interface considered in this article takes its values.
The operator ∆ϕ is the (infinite-dimensional) Laplacian computing derivatives with
respect to the height of the random surface and L is an operator associated with a
uniformly elliptic system of equations with infinite range (and with exponential decay
on the size of the long range coefficients) on the discrete lattice Zd. The analysis of
these systems requires to overcome some difficulties; a number of properties which
are valid for elliptic equations, and used to study the random interface models, are
known to be false for elliptic systems. It is for instance the case for the maximum
principle, which is used to obtain a random walk representation, the De Giorgi-Nash-
Moser regularity theory for uniformly elliptic and parabolic PDE (see [84, 39], [57,
Section 8] and the counterexample of De Giorgi [40]) and the Nash-Aronson estimate
on the heat kernel (see [11]).

To resolve this lack of regularity, we rely on a perturbative argument, and make
use of ideas from Schauder theory (see [67, Section 3]), as well as the ones from the
large-scale regularity in homogenization (see Avellaneda, Lin [12, 13] and Armstrong,
Smart [10]); we leverage on the fact that the inverse temperature β is chosen very
large so that the elliptic operator L can be written

Lspat := − 1

2β
∆ + Lpert,

where the operator Lpert is a perturbative term; its typical size is of order β−
3
2 ≪ β−1.

One can thus prove that any solution u of the Equation (1.2.1) is well-approximated
on every scale by a solution u of the equation −∆ϕ− 1

2β ∆ for which the regularity can
be easily established. It is then possible to borrow the strong regularity properties of
the function u and transfer it to the solution of (1.2.1). This strategy is implemented
in Section 5 and allows us to prove the C0,1−ε-regularity of the solution of the Helffer-
Sjöstrand equation, and to deduce from this regularity property various estimates on
other quantities of interest (e.g, decay estimates on the heat kernel in dynamic random
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environment, decay and regularity for the Green’s matrix associated with the Helffer-
Sjöstrand operator). The regularity exponent ε depends on the dimension d and the
inverse temperature β, and tends to 0 as β tends to infinity; in the perturbative
regime, the result turns out to be much stronger than the C0,α-regularity provided
by the De Giorgi-Nash-Moser theory (for some tiny exponent α > 0) in the case
of elliptic equations, and allows to quantify (precisely) the mixing properties of the
random field.

1.2.3. Stochastic homogenization. — The main difficulty to establish Theorem 1 is
that since the Villain model is not exactly solvable, the dependence of the constants c1
and c2 on the dimension d and the inverse temperature β is highly non explicit; one
does not expect to have a simple formula for these coefficients. However, it is necessary
to analyze them in order to prove the expansions (1.1.9) and (1.1.10); this is achieved
by using tools from the quantitative theory of stochastic homogenization.

This theory is typically interested in the understanding of the large-scale behavior
of the solutions of the elliptic equation

(1.2.2) −∇ · a(x)∇u = 0 in Rd,

where a is a random, uniformly elliptic coefficient field that is stationary and ergodic.
The general objective is to prove that, on large scales, the solutions of (1.2.2) behave
like the solutions of the elliptic equation

(1.2.3) −∇ · a∇u = 0 in Rd,

where a is a constant uniformly elliptic coefficient called the homogenized matrix. The
theory was initially developed in the 80’s, in the works of Kozlov [74], Papanicolaou
and Varadhan [86], and Yurinskĭı [91]. Dal Maso and Modica [32, 33] extended these
results a few years later to non-linear equations using variational arguments inspired
by Γ-convergence. All of these results rely on the ergodic theorem, and are therefore
purely qualitative.

The main difficulty in the establishment of a quantitative theory is to transfer
the quantitative ergodicity encoded in the coefficient field a to the solutions of the
equation. This problem was addressed in a satisfactory fashion for the first time by
Gloria and Otto in [61, 62], where, building upon the ideas of [83], they used spectral
gap inequalities (or concentration inequalities) to transfer the quantitative ergodicity
of the coefficient field to the solutions of (1.2.2). These results were then further
developed in [64, 63, 59, 60].

Another approach, which is the one pursued in this article, was initiated by Arm-
strong and Smart in [10], who extended the techniques of Avellaneda and Lin [12, 13],
the ones of Dal Maso and Modica [32, 33] and obtained an algebraic, suboptimal
rate of convergence for the homogenization error of the Dirichlet problem associated
with the non-linear version of the Equation (1.2.2). These results were then improved
in [9, 6, 7] to obtain optimal rates. Their approach relies on mixing conditions on the
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coefficient fields and on the quantification of the closeness of dual monotone quanti-
ties (see Section 6). An extension of the techniques of [7] to the setting of differential
forms (which also appear in this article in the dual Villain model) can be found in [35],
and to the uniformly convex gradient field model in [34]. In [81], Mourrat and Otto
study the correlation structure of the corrector and prove that it is similar, in the
large-scale limit, to the one of a variant of a Gaussian free field. Their strategy shares
some similarities with ours: under some suitable assumptions on the coefficient field,
they use a Helffer-Sjöstrand representation formula to study the correlation of the
corrector, and reduce the problem to the question of the quantitative homogenization
of the Green’s function associated with the heterogeneous operator (1.2.2).

To prove Theorem 1, we apply the techniques of [7] to the Helffer-Sjöstrand equa-
tion to prove the quantitative homogenization of the mixed derivative of the Green’s
matrix associated with this operator. The strategy can be decomposed into two steps.

The first one relies on the variational structure of the Helffer-Sjöstrand operator and
is the main subject of Section 6: following the arguments of [7, Section 2], we define two
subadditive quantities, denoted by ν and ν∗. The first one corresponds to the energy
of the Dirichlet problem associated with the Helffer-Sjöstrand operator (1.2.1) in a
domain U ⊆ Zd and subject to affine boundary condition, the second one corresponds
to the energy of the Neumann problem of the same operator with an affine flux. Each
of these two quantities depends on two parameters: the domain of integration U and
the slope of the affine boundary condition, denoted by p (for ν) and p∗ (for ν∗). These
energies are quadratic, uniformly convex with respect to the variables p and p∗, and are
approximately convex dual to one another. They additionally satisfy a subadditivity
property with respect to the domain U , and one can show that they converge as the
size of the domain tends to infinity to a pair of quadratic, convex dual functions, i.e.,
there exists a positive definite matrix a such that

ν (U, p) −→
|U |→∞

1

2
p · ap and ν∗ (U, p∗) −→

|U |→∞

1

2
p∗ · a−1p∗.

The matrix a plays a similar role as the homogenized matrix in (1.2.3); in the case of
the present random interface model, it gives the covariance matrix of the continuous
(homogenized) Gaussian free field which describes the large-scale behavior of the
random surface as established in [82]. The objective of the proofs of Section 6 is to
quantify this convergence and to obtain an algebraic rate: we show that, for large β,
there exists an exponent α > 0 depending only on the dimension d such that for any
cube □ ⊆ Zd of size R > 0,

(1.2.4)
∣∣∣∣ν (□, p)− 1

2
p · ap

∣∣∣∣+ ∣∣∣∣ν (□, p∗)− 1

2
p∗ · a−1p∗

∣∣∣∣ ≤ CR−α.

The strategy to prove the quantitative rate (1.2.4) relies on the approximate convex
duality of the maps p 7→ ν (U, p) and p∗ 7→ ν∗ (U, p∗). Following [7], we use a multiscale
argument to prove that, as one passes to a larger scale, the convex duality defect

p 7→ inf
p∗∈Rd

[ν (□, p) + ν∗ (□, p∗)− p · p∗] ,
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must contract by a multiplicative factor strictly smaller than 1, and thus it is equal
to 0 in the infinite volume limit. More precisely we show that the convex duality
defect can be controlled by the subadditivity defect, and then iterate the result over
all the scales from 1 to R to obtain (1.2.4) (see Section 6.1.3). As a byproduct of
the proof, we obtain a quantitative control on the sublinearity of the finite-volume
corrector defined as the solution of the Dirichlet problem: given an affine function lp
of slope p, and a cube □R := [−R,R]d ∩ Zd of size R,{

L (lp + χR,p) = 0 in □R × Ω,

χR,p = 0 on ∂□R × Ω.

This estimate takes the following form

(1.2.5) ∥χR,p∥L2(□R,µβ) ≤
C

R1−α
,

where the average L2-norm is considered over both the spatial variable and the random
field (see (2.1.5)).

The second step in the argument, which extends the results of [8], is to prove
quantitative homogenization of the mixed derivative of the Green’s matrix associated
with the Helffer-Sjöstrand operator (1.2.1); it is the subject of Section 7. In the setting
of the divergence form elliptic operator (1.2.2), the properties of the Green’s function
are well-understood: moment bounds on the Green’s function, its gradient and mixed
derivative are proved in [41, 19, 28], and quantitative homogenization estimates are
proved in [7, Sections 8 and 9] and in [20]. The argument used here relies on a common
strategy in stochastic homogenization: the two-scale expansion. It is implemented as
follows: the large-scale behavior of the fundamental solution G : Ω × Zd → R(d

2)×(d
2)

of the elliptic system
LG = δ0 in Zd × Ω,

is described by the (deterministic) fundamental solution G : Zd → R(d
2)×(d

2) of the
homogenized elliptic system

−∇ · a∇G = δ0 in Zd.

The proof of this result relies on a two-scale expansion for systems of equations: we
select a suitable cube □ ⊆ Rd and define the function, for any k ∈ {1, . . . ,

(
d
2

)
}

H·k := G·k +
d∑

i=1

(d
2)∑

j=1

χR,eij
∇iGjk.

We then compute the value of LH and prove, by using the quantitative information
obtained on the corrector (1.2.5), that this value is small in a suitable functional
space. This argument shows that the function H (resp. its gradient) is quantitatively
close to the functions G (resp. its gradient). Once this is achieved, we can iterate
the argument to obtain a quantitative homogenization result for the mixed derivative
of the Green’s matrix. The overall strategy is similar to the one in the case of the
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divergence form elliptic Equations (1.2.2) but a number of technicalities need to be
treated along the way pertaining to either the Witten Laplacian ∆ϕ (this difficulty has
been successfully addressed in [8]), and the infinite range of the elliptic operator Lspat

(using the exponential decay of the interaction is enough to adapt the arguments
developed in the nearest-neighbor setting).

1.2.4. Second-order Helffer-Sjöstrand equation. — As we mentioned, the method pur-
sued in this paper differs from [7] and [8] and is based on the regularity theory of
the second-order Helffer-Sjöstrand equation. We note that, contrary to the case of the
homogenization of the elliptic Equation (1.2.2), the subadditive quantities are deter-
ministic objects and are applied to the operator (1.2.1) which is essentially infinite-
dimensional. To quantify the subadditive ergodic theorem and obtain the rate of
convergence (1.2.4), it is crucial that the random fields ∇ϕ that appears in the defi-
nition of ν and ν∗ decorrelates (see Definition 6.1.4). While the proofs of quantitative
rate of convergence in [7, Section 2] rely on a finite range dependence assumption of
the coefficient field, we rely here on the regularity properties of the Helffer-Sjöstrand
operator to prove sufficient decorrelation estimates on the field. The same issues were
addressed in the work of Armstrong and Wu [8], to study the ∇ϕ model and prove
C2-regularity of the surface tension conjectured by Funaki and Spohn [53]; the argu-
ments presented there are different as they rely on couplings based on the probabilistic
interpretation of the equation to obtain sufficient decorrelation of the discrete gradi-
ent ∇ϕ. In the present paper, we rely on the observation of Conlon and Spencer [29]
that if u is a solution to the Helffer-Sjöstrand Equation (1.2.1), then the derivative
of the function u with respect to the field ϕ, i.e., the map v : (x, ϕ, y) 7→ ∂yu(x, ϕ),
for x, y ∈ Zd and ϕ ∈ Ω, solves a second-order Helffer-Sjöstrand equation of the form

(1.2.6) ∆ϕv(x, y, ϕ)+Lspat,xv(x, y, ϕ)+Lspat,yv(x, y, ϕ)+(∂yL ) v = 0 in Zd×Zd×Ω.

We refer to Section 5.4 for a precise definition. This operator is then used in [29] to
obtain uniform third moment bounds for the ∇ϕ Gibbs measure. We note that this
strategy is very similar to the one developed in stochastic homogenization in [61, 62, 59,
60]. In this paper we exploit more precise information of the operator, and apply the
C0,1−ε regularity theory to obtain decay estimates on the Green’s function associated
with (1.2.6). In particular, we obtain the regularity theory for the second-order Helffer-
Sjöstrand operator for large β, namely, the off-diagonal decay of the associated Green’s
matrix, its gradient, and its mixed derivative (see Corollary 5.4.4). These properties
can be used to quantify the ergodicity of the Helffer-Sjöstrand equation and obtain
the quantitative rate of convergence (1.2.4).

The second-order Helffer-Sjöstrand equation also plays a crucial role to derive The-
orem 1 from the homogenization results. Applying the duality, we map the two-point
function of the Villain model to a non-local observable (see Proposition 3.1.1). This
non-local observable is then analyzed by repeated applications of the Helffer-Sjöstrand
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representation to single out the main contribution (thus the second-order Helffer-
Sjöstrand operator emerges), and the C0,1−ε regularity theory is crucially applied to
control the remainder terms (see Section 4.4 and Section 4.5 for the details).

1.2.5. First order expansion of the two-point functions. — The first order expansion
of the two-point function stated in Theorem 1 is obtained by post-processing all
the arguments above. We first use the sine-Gordon representation and the polymer
expansion to reduce the question to the understanding of the large scale behavior of
a vector-valued random surface model, whose Hamiltonian is a perturbation of the
one of a Gaussian free field, and use the properties of the Helffer-Sjöstrand equation
to treat the problem. The proof of Theorem 1 is decomposed into three parts:

— We establish a C0,1−ε-regularity theory for the solutions of the Helffer-
Sjöstrand and second-order Helffer-Sjöstrand operators by using the techniques
of Schauder regularity (through a perturbative argument) in order to obtain a
precise understanding of the correlation structure of the random field, this is
done in Section 5;

— We prove a quantitative homogenization theorem for the mixed derivative asso-
ciated with the Helffer-Sjöstrand operator (Theorem 2), this is done in Sections 6
and 7;

— We post-process the results of the two arguments above to prove Theorem 1.
The proof relies on the study of the non-local observable introduced in Proposi-
tion 3.1.1; it requires to analyze a number of terms, to isolate the leading order
terms, and to estimate quantitatively the lower order ones. It is rather techni-
cal and is split into two sections: in Section 4, we present a detailed sketch of
the argument, isolate the leading order from the lower order terms, and state
the estimates on each of these terms. Section 8 is devoted to the proof of the
technical estimates.

1.3. Organization of the paper

This article is the short version of the v1 of arxiv preprint [36], which contains in
addition some detailed but standard computations which are recalled here without
a proof. In the next section, we introduce some preliminary notation and results. In
Section 3, we recall the dual formulation of the Villain model in terms of a vector-
valued random interface model, based on the ideas of Fröhlich and Spencer [51] and
following the presentation of Bauerschmidt [16]. We then derive the Helffer-Sjöstrand
equation for the renormalized measure and state the main regularity estimates on
the Green’s matrix proved in Section 5, and the quantitative homogenization of the
mixed derivative of the Green’s matrix proved in Sections 6 and 7. In Section 4, we
sketch the proof of the main theorem, assuming the C0,1−ε regularity for the solutions
of the Helffer-Sjöstrand equation (established in Section 5), and the quantitative ho-
mogenization of the mixed derivative of the Green’s matrix (established in Sections 7
and 8). Finally in Section 8, we give detailed proofs of the claims in Section 4.
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