Astérisque

HENRY C. PINKHAM Deformations of algebraic varieties with *G_m* action

Astérisque, tome 20 (1974)

http://www.numdam.org/item?id=AST_1974_20_1_0

© Société mathématique de France, 1974, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Table of Contents

			Page	No.
	1.	Introduction		3
Chapter	I.	Generalities on deformations of varieties with G action m		16
	2.	Deformations of singularities with C _m action		16
	3.	A sketch of Schlessinger's results for cones over projectively normal varieties		23
	4.	A theorem on negatively graded cones		27
	5.	The theorem on negative grading when X is projectively normal		29
Chapter	II.	Deformations of cones over projectively normal curves		36
	6.	Mumford's study of T ¹		36
	7.	Smooth deformations of cones over curves		42
	8.	The cone over the rational curve of degree n in ${{\rm I\!P}}^n$		48
	9.	Cones over elliptic curves		63
Chapter	III.	One-dimensional cones		74
	10.	Computation of T ¹ for Gorenstein curv	ves	74
	11.	Deformations of cones of lines		79

Chapter IV.	Monomial curves	92
12.	Monomial curves: definitions and study of T ^l	92
13.	Monomial curves and Weierstrass points	99
14.	The existence of smooth deformations of monomial curves in certain special cases.	108
15.	An example	121
Bibliography		

1. Introduction

This thesis^{*} is devoted to a study of the deformations of an isolated singularity of an algebraic variety admitting a multiplicative group action. In this section we give a summary of the techniques used and the results obtained.

(1.1) First we set up some notation and review the relevant elements of deformation theory. Details can be found in
[43] and [45]. We fix once and for all an algebraically closed field k.

Let B be a local k-algebra of finite type. Let \mathcal{C} be the category of local artin k-algebras, $\hat{\mathcal{C}}$ that of complete noetherian local k-algebras: hence if $A \in \hat{\mathcal{C}}$ with maximal ideal m, then $A/m^i \in \hat{\mathcal{C}}$ for all i.

<u>Definition</u> (1.2) An infinitesimal deformation of B to A $\in \mathbb{C}$ is a cartesian diagram

where $A \longrightarrow B'$ is flat.

* A slightly different version of this work was submitted to Harvard University in partial fulfillment of the Ph.D. requirements in May 1974.

3

H. PINKHAM

<u>Definition</u> (1.3) D, the <u>local deformation functor</u> from Cto {sets} takes $A \in C$ to isomorphism classes of deformations of B to A, isomorphism being defined in the obvious way. We extend D to \widehat{C} by taking inverse limits to get the notion of <u>formal deformation</u>.

We will usually be interested in minimal "complete" families of formal deformations, in the following sense: <u>Definition</u> (1.4) A formal deformation $\zeta \in D(R)$, $R \in \widehat{C}$ is <u>versal</u> if

(i) any formal deformation $\zeta' \in D(S)$ may be deduced from ζ by a base change $R \longrightarrow S$.

(ii) the Zariski tangent space of R is minimal for (i). R (or Spec R) is then called the <u>formal moduli space</u> of B; its tangent space (the k-vector space of first order deformations) is denoted T_B^1 , or just T^1 if no confusion is possible.

Lichtenbaum-Schlessinger [28] have studied T^1 using the cotangent complex. Schlessinger's theorem [43] implies that when Spec B has an isolated singularity at its closed point, then B has a versal deformation.

4