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1. Introduction 

This thesis*is devoted to a study of the deformations 

of an isolated singularity of an algebraic variety admitting 

a multiplicative group action. In this section we give a 

summary of the techniques used and the results obtained. 

(1.1) First we set up some notation and review the relevant 

elements of deformation theory. Details can be found in 

[4^] and [45]. We fix once and for all an algebraically 

closed field k. 

Let B be a local k-algebra of finite type. Let (5 be 

the category of local artin k-algebras, C that of complete 

noetherian local k-algebras: hence if A € C with maximal 

ideal m, then A/m 1 € C for all i. 

Definition (1.2) An infinitesimal deformation of B to A 6 C 

is a cartesian diagram 

B • > B = B 1 ® k 
T A A 

res ^ . 
A > k 

where A > B* is flat. 

* A slightly different version of this work was submitted to 
Harvard University in partial fulfillment of the Ph.D. 
requirements in May 19 74. 
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Definition (l.jj) D, the local deformation functor from C 

to {sets} takes A € C to isomorphism classes of 

deformations of B to A, isomorphism being defined in the 

obvious way. We extend D to C by taking inverse limits 

to get the notion of forma1 deformat!on. 

We will usually be interested in minimal "complete" 

families of formal deformations, in the following sense: 

Definition (1.4) A formal deformation £ € D ( R ) , R € C 

is versal if 

(i) any formal deformation £· € D(s) may be deduced 

from £ by a base change R > S . 

(ii) the Zariski tangent space of R is minimal for (i). 

R (or Spec R ) is then called the formal moduli space of B; 

its tangent space (the k-vector space of first order 

deformations) is denoted T^, or just T 1 if no confusion is 
B 

possible. 

Lichtenbaum-Schlessinger [28] have studied using 

the cotangent complex. Schlessinger 1s theorem [43] implies 

that when Spec B has an isolated singularity at its closed 

point, then B has a versal deformation. 

4 


