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S K E W D I F F E R E N T I A L FIELDS, D I F F E R E N T I A L A N D 
D I F F E R E N C E EQUATIONS 

by 

Marius van der Put 

Dedicated to Jean-Pierre Ramis on the occasion of his 60th birthday 

Abstract. — The central question is: Let a differential or difference equation over a 
field K be isomorphic to all its Galois twists w.r.t. the group Gal(/\/A;). Does the 
equation descend to A;? For a number of categories of equations an answer is given. 
Résumé (Corps différentiels non commutatifs, équations différentielles et équations aux dif­
férences) 

On étudie la descente sur un corps k d'une équation différentielle ou aux différences 
donnée sur un corps K et qui est isomorphe à toutes ses conjuguées sous l'action 
du groupe de Galois Gal (/<"/&) de K sur k. On traite le cas de plusieurs classes 
d'énuations. 

In t roduct ion 

Rationality questions for differential modules and differential operators are strongly 
related to skew differential fields. This theme has been developed in [H-P]. An open 
question in [H-P] has found an answer, namely the existence and unicity of the 
differentiation on a skew field of finite dimension over its center, that is. a differential 
field in the usual sense. The present paper, written in honour' of Jean-Pierre Ramis, 
reviews these descent problems but now in the context of meromorphic differential 
equations. A remarkable family of examples is the result. Equally surprising is that 
descent does hold for meromorphic ^/-difference equations. This is shown using recent 
wrork of J.-P. Ramis and J. Sauloy on moduli for these equations. Finally, it is shown 
that descent does not hold for meromorphic ordinary difference equations. 
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192 M. VAN DER. PUT 

1. The construct ion of skew differential fields 

Let k denote a differential field having characteristic 0. The skew fields, or more 
generally the algebras F . that we consider here are cent rah simple, finite dimensional 
over their center k. A differentiation on F , extending the differentiation of h, is an 
additive map d : F -> F such that 0{ab) = d{a)b + ad{b) holds for all a.b e F. More­
over, we require that 0(a) = a' for every a £ A;. For special cases, such differentiations 
are constructed in [H-P]. Here1 we prove a general result on differentiations. 

Theorem 1.1. — Let k be a differential field of characteristic 0. Let F be a central, 
simple algebra over k of finite dimension. Suppose that F contains a maximal com­
mutative subfield K winch is Galois over k. There exists a differentiation do on F 
extending the differentiation of k and having the property OQK C K. 

Moreover, for any differentiation d on F extending the differentiation of k, there 
is an element c £ F (unique up to an element in k) such that d(a) = do (a) + a c — c a 

for all a £ F. 

Proof. --- The asumptions on F imply that F is a crossed product algebra (see [Bl], 
Chapitre IV). The structure of F is the following: 

The elements of F are uniquely given by expressions ^2aeG da[a], where G is the 
Galois group of K/k and all da £ K. The multiplication is given by the rules [a]d = 
a(d)[a] (for a £ G, d £ K) and [o~][r] = c(a,r)[ar}. Here (a, r) i—> c(o~,r) is a 
2-cocycle representing an element of H2(G. K*). 

Let 1 denote the unique differentiation on K, extending the one of A;. Then (a, r) H-» 
c(a, r)'/e(a, T) is a 2-cocycle for H2(G. K). Since the latter group is trivial (see [Se]). 
there are elements {a(a)} in K such that a(a) + °'a(r) — a(ar) — c(a; T)'/'cfo(a r ) . 
Now, define do by the formula 

a 4 E 4 H ) = E ( ' ( + i « W ) [ 4 

The verification that do has the required properties is straightforward. 
Let d be another derivation on F extending the one of k. Then 0 — do is a /c-linear 

derivation on F. It is known that these derivations are given by a H-> [a, c] := ac — ca 
for c £ F. (See [Ren]. Corollaire 3 on p. I I I ) . • 

We note that the differentiation 9 on F, extending the differentiation of A:, is almost 
unique if one prescribes that d is the usual differentiation on the maximal commutative 
subfield K of F . Indeed, d(a) = do (a) + [a. c] for some c £ F . For a £ K one has 
[a. c] = 0. Further, K is a maximal commutative subfield of F and, thus, c £ K. 

2. Skew differential fields over R({.x}) 

Nota t ions . — A: := R({jr}), K := C({x}) are the fields of convergent Laurent series 
over R and C. The differentiation on these fields is given by / ^ f := xdf/dx. 
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Hamilton's quaternion field is denoted by H :— R l + Hi + R j + RA. Then F — 
H ®r A: is a quaternion field with center A;. Let || || denote the usual norm on H. 
The differentiation on F is defined by (h # /)' = h Q / ' for all h G H and / G A:. 
The elements of F are represented by convergent Laurent series with coefficients in H. 
Thus, an element of F has the form E a n x n with all an G H and such that only finitely 
many negative powers of .r are present and, moreover, there are positive constants 
C, R with ||a„|| ^ CRn for all n ^ 0. One observes that ( ^ a n / 1 ) ' = £>a.„;r". 

Consider the 1-diniensional differential module M = Fe over F, defined by the 
formula Oe = dc. After identifying F with A/, via /; i—> />e, one has d(v) = 7/ + v<i. 
For d we make the choice d = / + .r~lj. One can consider A/ as a differential module 
over K of dimension 2, by the obvious inclusion K C F. Further. A/ is also a 
differential module over k of dimension 4. 

Proposition 2.L — End^d] (A/), A/ic H-algebra of the endomorphisins of the k-differ­
ential module A/, zs ogtza/ ¿0 H. 

Proof Every A>linear map L : A/ —> A/ has uniquely the form L(v) = mo ! / re/1 + 
.yVa2 + kva-s with ao a:$ G F. A calculation shows that 

(dL - L0)(v) = v(a{} + [a(), r/]) + iv + [a{, of]) + jv(a'2 + [a'2, d]) + Av(^ + [a3, d]). 

Hence L G End/,^ (A/) if and only if a[ + [a-,, d] — 0 for / = ( ) . . . . . 3. Therefore, the 
proposition follows from the statement: 

The only solutions a G F of a' + [a, d] = 0 are a G R. 

The proof of this statement is as follows. Write a = E ^ a „ x n with all an G H. 
Then, a' + [a. d] = 0 translates into 

E (na.n + [an,z] + \a„ . i..y!).x'" = 0. 

For // > 0 and t — to + f 1 •/ + A2j + A3A: G H one has 

/// + [A. •/] = ///0 + ntn + (///2 + 2t:])j + (/;A3 - 2t2)k. 

It follows that ||[nt||] + [A,/]|| ^ //||/||. 
For ,s = so + sii + s-2J + s:ik € H one has [.s\j] = 2.s;A*-- 2.s\v and thus | | [s?j | | ]^ 2||s||. 

One concludes that for n > 0 one has ||a„ + i || ^ ^-||a n||. If some am / 0 with 111 > 0. 
then a n 7̂  0 for all n ^ m. Moreover, for a suitable constant C > 0 one has 
||<7n|| ^ C2~A'//! for all n >m •///. This contradicts the assumption that the Laurent 
series a is convergent. The conclusion is that an — 0 for all n ^ 1. 

0 • OQ + [ao- + lai- j] — 0 implies that «0 G R + R/. After subtracting from a a real 
number, one has OQ G Hi. In the sequel we will write * for a non-zero real number. 
Suppose that ao = */'. Then — a_i + [a_i. /'] + [«o-j] = 0 implies that a_i = *j + *A\ 
The equation — 2a_ 2 + [«-2, ¿1 + [ a-D j] — ^ implies a_ 2 = *z. By induction, one finds 
that a _ 2 m = i* and a _ 2 m _ i = *j -f *k This contradicts the fact that a is a Laurent 
series. One concludes that ao = 0. • 
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In the proof of the following corollary we will use some ideas and results of [H-P]. 
For any differential fields k C if, one says that a differential module AI over if 
descends to k, if there exists a differential module N over k such that Al = if <S>h Ar. 
Suppose that K/k is a Galois extension with group G. For a differential module AI 
over K and for a G G, one defines the twisted differential module aAI by: 

aAI is equal to Al as an additive group. 
For / G if and m G aAl one puts fm = a~~l(f)m. 
The 9 on a M coincides with 9 on AI. 

If M descends to fc, then clearly Ma =M for all a G G. The descent problem of 
[H-P] asks whether the converse is true. In general, there is an obstruction given by 
the class of a 2-cocycle. 

Corollary 2.2. We keep the above notations. 

(a) AI = Fe is an irreducible differential module over k. 
(b) Let a denote the non-trivial element of the Galois group of K/k. Then the 

twisted, differential module aAI over K is isomorphic to AI. 
(c) The K-differential module AI does not descend to k. 
(d) Let k = R((.x)) and K = C((.x)). The K - differential module K(S)KAI descends 

to k. 

Proof 
(a) Suppose that AI is reducible as a K-differential module. Let N C AI be a 

1-dirnensional if-submodule. Then jN is also a I-dimensional if-submodule and 
AI = N + jN. In particular. 71/ is semi-simple as A'-differential module. If AI is 
irreducible as K-differential module, then AI is semi-simple, too. According to [H-P], 
proposition 2.7, AI is also semi-simple as ^-differential module. Since End¿.[¿)](M) is 
a skewT field, one has that AI is irreducible as ^-differential module. 

(b) The map &(cr) : AI —-> Af given by fe i—>• jfe, is a a-linear bijection commuting 
with 0. This proves the statement. 

(c) Since $(cr)$(a) = - I , the 2-cocycle class in H2{{1, a} , C*), associated to AL 
is not trivial. It follows from [H-P], theorem 2.8, that the /^-differential module Al 
does not descend to k. 

(d) Put Al = K®K M- The twisted if-module ° AI is isomorphic to Al. According 
to [H-P], theorem 2.4, AI descends to k. • 

Explicit calculations. — The element e of the if-differential module Al = Fe is a 
cyclic vector. The minimal monic operator L^ G K[d] with L^e — 0 can be calculated 
to be 

á2 + á + ( l + a T 2 - ¿ ) . 

Here, we prefer to write S = xd/dx instead of d, since the latter may be confusing. 
Note that 5x = xS + x. The corollary translates into the following: 
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