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GROMOV HYPERBOLICITY
AND QUASIHYPERBOLIC GEODESICS

 P KOSKELA, P LAMMI  V MANOJLOVIĆ

A. – We characterize Gromov hyperbolicity of the quasihyperbolic metric space (Ω, k) by
geometric properties of the Ahlfors regular length metric measure space (Ω, d, µ). The characterizing
properties are called the Gehring-Hayman condition and the ball-separation condition.

R. – Nous caractérisons l’hyperbolicité au sens de Gromov de l’espace quasi-hyperbolique
(Ω, k) par des propriétés géométriques (dites condition de Gehring-Hayman et condition de séparation
des boules) de l’espace métrique mesuré Ahlfors-régulier (Ω, d, µ).

1. Introduction

Given a proper subdomain Ω of Euclidean space Rn, n ≥ 2, equipped with Euclidean
distance, one defines the quasihyperbolic metric k in Ω as the path metric generated by the
density

ρ(z) =
1

d(z)
,

where d(z) = dist(z, ∂Ω). Precisely, one sets

k(x, y) = inf
γxy

∫
γxy

ρ(z) ds,

where the infimum is taken over all rectifiable curves γxy that join x and y in Ω and the
integral is the usual line integral. Then Ω equipped with k is a geodesic metric space: there
is a curve γxy whose length in the above sense equals k(x, y). Let us denote by [x, y] any
such geodesic; these geodesics are not necessarily unique as can be easily seen, for example
for Ω = Rn \{0}. The quasihyperbolic metric k was introduced in [5] and [4] where the basic
properties of it were established.
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If for all triples of geodesics [x, y], [y, z], [z, x] in Ω every point in [x, y] is within k-dis-
tance δ from [y, z]∪ [z, x] then the space (Ω, k) is called δ-hyperbolic. Roughly speaking this
means that geodesic triangles in Ω are δ-thin. Moreover, we say that (Ω, k) is Gromov hy-
perbolic if it is δ-hyperbolic for some δ. The following theorem from [1] that extends results
from [2] gives a complete characterization of Gromov hyperbolicity of (Ω, k).

T 1.1. – Let Ω ⊂ Rn be a proper subdomain. Then (Ω, k) is Gromov hyperbolic if
and only if Ω satisfies both a Gehring-Hayman condition and a ball separation condition.

Above, the Gehring-Hayman condition means that there is a constant Cgh ≥ 1 such that
for each pair of points x, y in Ω and for each quasihyperbolic geodesic [x, y] it holds that

length([x, y]) ≤ Cghlength(γxy),

where γxy is any other curve joining x to y in Ω. In other words, it says that quasihyperbolic
geodesics are essentially the shortest curves in Ω.

The other condition, a ball separation condition, requires the existence of a constant
Cbs ≥ 1 such that for each pair of points x and y, each quasihyperbolic geodesic [x, y], every
z ∈ [x, y], and every curve γxy joining x to y it holds that

B(z, Cbsd(z)) ∩ γxy 6= ∅.

Here the ball is taken with respect to the inner metric of Ω.

Notice that the three conditions in Theorem 1.1, Gromov hyperbolicity and the Gehring-
Hayman and the ball separation conditions, are only based on metric concepts. It is then
natural to ask for an extension of this characterization to an abstract metric setting. Such
an extension was given in [1] that relies on an analytic assumption that essentially requires
the space in question to support a suitable Poincaré inequality. This very same condition,
expressed in terms of moduli of curve families [7], is already in force in [2].

The purpose of this paper is to show that Poincaré inequalities are not critical for geo-
metric characterizations of Gromov hyperbolicity of a non-complete metric space equipped
with the quasihyperbolic metric. Our main result reads as follows.

T 1.2. – Let Q > 1 and let (X, d, µ) be a Q-regular metric measure space with
(X, d) a locally compact and annularly quasiconvex length space. Let Ω be a bounded and proper
subdomain of X, and let dΩ be the inner metric on Ω associated to d. Then (Ω, k) is Gromov
hyperbolic if and only if (Ω, dΩ) satisfies both a Gehring-Hayman condition and a ball separation
condition.

The main point in Theorem 1.2 is the necessity of the Gehring-Hayman and ball separa-
tion conditions; their sufficiency is already given in [1, Theorem 2.4 and Theorem 6.1].

Above, annular quasiconvexity means that there is a constant λ ≥ 1 so that for any x ∈ X
and all 0 < r′ < r each pair of points y, z in B(x, r) \B(x, r′) can be joined with a path γyz
inB(x, λr)\B(x, r′/λ) such that length(γyz) ≤ λd(y, z),Q-regularity requires the existence
of a constant Cq so that

rQ/Cq ≤ µ(B(x, r)) ≤ Cqr
Q
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for all r > 0 and all x ∈ X, and the other concepts are defined analogously to the Euclidean
setting described in the beginning of our introduction. See Section 2 for the precise defini-
tions. In fact, the assumptions of Theorem 1.2 can be somewhat relaxed, see Section 5.

This paper is organized as follows. Section 2 contains necessary definitions. In Section 3 we
give preliminaries relating the quasihyperbolic metric and Whitney balls. Section 4 is devoted
to the proof of our main technical estimate, and Section 5 contains the proof of our main
result and some generalizations.

2. Definitions

Let (X, d) be a metric space. A curve is a continuous map γ : [a, b]→ X from an interval
[a, b] ⊂ R to X. We also denote the image set γ([a, b]) of γ by γ. The length `d(γ) of γ with
respect to the metric d is defined as

`d(γ) = sup

m−1∑
i=0

d(γ(ti), γ(ti+1)),

where the supremum is taken over all partitions a = t0 < t1 < · · · < tm = b of the
interval [a, b]. If `d(γ) < ∞, then γ is said to be a rectifiable curve. When the parameter
interval is open or half-open, we set

`d(γ) = sup `d(γ|[c,d]),

where the supremum is taken over all compact subintervals [c, d].

When every pair of points in (X, d) can be joined with a rectifiable curve, the space (X, d)

is called rectifiably connected. If `d(γxy) = d(x, y) for some curve γxy joining points x, y ∈ X,
then γxy is said to be a geodesic. If every pair of points in (X, d) can be joined with a geodesic,
then (X, d) is called a geodesic space. Moreover, a geodesic ray in X is an isometric image
in (X, d) of the interval [0,∞). Furthermore, for a rectifiable curve γ we define the arc length
s : [a, b]→ [0,∞) along γ by

s(t) = `d(γ|[a,t]).

Let (X, d) be a geodesic metric space and let δ ≥ 0. Denote by [x, y] any geodesic joining
two points x and y in X. If for all triples of geodesics [x, y], [y, z], [z, x] in X every point
in [x, y] is within distance δ from [y, z]∪ [z, x], the space (X, d) is called δ-hyperbolic. In other
words, geodesic triangles in X are δ-thin. Moreover, we say that a space is Gromov hyperbolic
if it is δ-hyperbolic for some δ. All Gromov hyperbolic spaces in this paper are assumed to
be unbounded.

Next, let (X, d) be a locally compact, rectifiably connected and non-complete metric
space, and denote by Xd its metric completion. Then the boundary ∂dX := Xd \ X is
nonempty. We write

d(z) := distd(z, ∂dX) = inf{d(z, x) | x ∈ ∂dX}

for z ∈ X.

Given a real number D ≥ 1, a curve γ : [a, b]→ X is called a D-quasiconvex curve if

`d(γ) ≤ Dd(γ(a), γ(b)).
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If γ also satisfies the cigar condition

min{`d(γ|[a,t]), `d(γ|[t,b])} ≤ Dd(γ(t))

for every t ∈ [a, b], the curve is called a D-uniform curve. A metric space (X, d) is called a
D-quasiconvex space or D-uniform space if every pair of points in it can be joined with a
D-quasiconvex curve or a D-uniform curve respectively.

Let ρ : X → (0,∞) be a continuous function. For each rectifiable curve γ : [a, b]→ X we
define the ρ-length `ρ(γ) of γ by

`ρ(γ) =

∫
γ

ρ ds =

∫ b

a

ρ(γ(t)) ds(t).

Because (X, d) is rectifiably connected, the density ρ determines a metric dρ, called the
ρ-metric, defined by

dρ(x, y) = inf
γxy

`ρ(γxy),

where the infimum is taken over all rectifiable curves γxy joining x, y ∈ X. If ρ ≡ 1, then
`ρ(γ) = `d(γ) is the length of the curve γ with respect to the metric d, and the metric dρ = `d
is the inner metric associated with d. Generally, if the distance between every pair of points in
the metric space is the infimum of the lengths of all curves joining the points, then the metric
space is called a length space.

If we choose

ρ(z) =
1

d(z)
,

we obtain the quasihyperbolic metric in X. In this special case, we denote the metric dρ
by k and the quasihyperbolic length of the curve γ by `k(γ). Moreover, [x, y]k refers to a
k-geodesic (i.e., quasihyperbolic geodesic) joining points x and y in X. Because we are deal-
ing with many different metrics, the usual metric notations will have an additional subscript
that refers to the metric in use. For ease of notation, terms which refer to the metric dρ will
have an additional subscript ρ instead of dρ.

We say that (X, d) satisfies a ball separation condition if there is a constant Cbs ≥ 1 such
that for each pair of points x, y ∈ X, for every k-geodesic [x, y]k ⊂ X, for every z ∈ [x, y]k,
and for every curve γxy joining points x and y, it holds that

(BS) Bd(z, Cbsd(z)) ∩ γxy 6= ∅.

Thus the condition says that the ball Bd(z, Cbsd(z)) either includes at least one of the
endpoints of the k-geodesic or it separates the endpoints. This condition was introduced in
[2, §7]. We also say that (X, d) satisfies the Gehring-Hayman condition if there is a constant
Cgh ≥ 1 such that for every k-geodesic [x, y]k it holds that

(GH) `d([x, y]k) ≤ Cgh`d(γxy),

where γxy is any other curve joining x to y in X.
Following [1], we say that (X, d) is minimally nice if (X, d) is a locally compact, rectifiably

connected and non-complete metric space, and the identity map from (X, d) to (X, `d) is
continuous. If (X, d) is minimally nice, then the identity map from (X, d) to (X, k) is a
homeomorphism, and (X, k) is complete (see [2, Theorem 2.8]); in particular, (X, k) is proper
(i.e., closed balls are compact) and geodesic (recall the Hopf-Rinow theorem).
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