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THE JONES-WITTEN INVARIANTS OF KNOTS

par Michael ATIYAH

Seminaire BOURBAKI

42eme annee, 1989-90, n° 715
novembre 1989

1. INTRODUCTION

One of the most remarkable developments of recent years has been
the work initiated by Vaughan Jones [2] [3] on knot invariants. This has

all the hallmarks of great mathematics. It produces simple new invariants
which solve classical problems and it involves a very wide range of ideas and

techniques from practically all branches of mathematics and physics. Here
is a list of the areas which have been significantly involved in the theory
up to the present : combinatorics, group representations, algebraic geom-
etry, differential geometry, differential equations, topology, Von Neumann
algebras, statistical mechanics, quantum field theory..Moreover the subject
continues to develop rapidly and a final picture has not yet emerged.

Given this very wide field I have to be very selective for a one-hour

presentation. I will concentrate on some aspects and I shall have to omit all
the technicalities. Moreover, to shorten the exposition, I will discuss only
the simplest case of the theory. Fuller accounts can be found in the papers
of Vaughan Jones [3] and Witten [9].

In 1984 Vaughan Jones surprised the experts in knot theory by pro-
ducing a polynomial invariant, now known as the Jones polynomial V(q) ,
which was superficially similar to the classical Alexander polynomial but
was, in essential features, rather different. In particular V(q) could distin-
guish (some) knots from their mirror images. For this and other reasons

V(q) turned out to be a very effective tool in knot theory and, as a re-
sult, old conjectures of P.G. Tait from the 19th century have now been
S.M.F.
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established.

The Jones polynomial can be profitably studied from many angles and
it has been generalized in several ways to produce further knot invariants.
Much of this work has involved important ideas from theoretical physics,
essentially physics of 2 dimensions. However a major break-through came in
1988 when Witten [10] gave a simple interpretation of the Jones polynomial
in terms of 3-dimensional physics. These ideas of Witten are based on a

heuristic use of the Feynman integral, but they lead to very explicit results
and calculations which can be verified by alternative rigorous methods. A
full mathematical treatment of Witten’s theory has yet to appear, so my
account has to be somewhat sketchy and incomplete.

Not only does Witten’s theory provide a physical "meaning" for the
Jones invariants but it also extends them to knots in an arbitrary com-

pact oriented 3-manifold. This is a major generalization which had been

attempted unsuccessfully via other methods. Finally, and most signifi-
cantly, Witten’s generalization allows us to define "relative invariants", for
3-manifolds with boundary. In this case the invariants are not numbers

but take their values in a vector space associated with the boundary. This

facility, of allowing manifolds with boundary, makes the theory much more
flexible and greatly facilitates computation, even for the "absolute" case of
closed 3-manifolds. The situation may roughly be compared with the story
of Lefschetz numbers in classical topology. The number of fixed points of a

self-map (analogous to the Jones invariant of a knot) re-interpreted as the
Lefschetz number, through the induced map on homology, becomes part of
a larger theory (analogous to Witten’s theory) and hence more computable.

In the next section I will summarize the key features of the Jones

polynomial, before going on in section 3 to describe Witten’s theory. In

section 4 I will outline the way in which Witten’s theory may be developed
mathematically. I will make no attempt in this presentation to give the

physical interpretation via Feynman integrals. For this I refer to Witten’s

papers [9] [10]. For a general survey of "topological quantum field theories"
see also [1] [8].



2. THE JONES POLYNOMIAL

We shall deal with oriented knots and links. These are just oriented

1-dimensional submanifolds of the 3-space S3 : a knot being the case of one

component. For an oriented link L the Jones polynomial VL(q) is a finite
Laurent series in the variable q 2 with integer coefficients. Its first basic

properties are :

(2.1) VL(q) =1 when L in the standard unknotted circle,
(2.2) VL*(q) = where L* is the mirror image of L .

VL (q) can be characterized by a skein relation. For this we consider a generic
plane projection of L , so that all crossing points have just 2 branches, one
"over" and one "under". Focussing attention on one crossing point we
can then consider the 3 versions of L obtained by allowing the 3 different

possibilities as shown below :

The skein relation for VL (q~ is the linear relation :

It is not hard to show that (2.1) and (2.3) uniquely determine VL(q) .
The difficulty is to prove consistency, i. e. that VL( q) depends on the link
L (up to isotopy) and not on any particular plane projection.

Note.- In fact VL(q) does not depend on the orientation of L. However

this is not true for the generalizations of VL(q) , except that reversing the
orientation of all components of L will always preserve the generalized Jones

polynomials.

Example.- For a (right-handed) trefoil knot V(q) = -q4 + q3 + q . By (2.2)
this distinguishes it from its mirror image, the left-handed trefoil.



Although it is possible to verify the consistency of (2.3) by direct com-
binatorial methods this is not very enlightening. A better approach, ex-

plained in [3], is based on the use of braids.
The Artin braid group on n strands Bn can be defined as the funda-

mental group of the configuration space Cn of n unordered distinct points
in the plane. There is an elementary geometric construction which assigns
to any braid f3 an oriented link /3 in S3 . All links arise in this way and the
equivalence relation on the union of all Bn given by

is explicitly known. Thus one may construct link invariants from suitable

braid invariants.

To get the right braid invariants to produce VL(q) , Jones introduces
certain representations of Bn .

These are representations depending on a parameter q and a partition
A of n. For q = 1 they reduce to the irreducible representations of

the symmetric group Sn pulled back to Bn via the natural homomorphism
Sn . The representations pa(q) come from representations of the

Hecke algebra.
The Jones polynomial VL(q) for L = /3 is now defined as a certain

linear combination of the characters of evaluated at /3 . The only

partitions A which are needed here are the partitions of n into (at most) 2

parts.

Note.- For generalizations of VL(q) one needs all partitions of n. These

generalizations lead to polynomials satisfying suitable generalizations of

(2.3).

In this braid group approach to the Jones polynomial it is still a mys-

tery why suitable linear combinations of the characters should give
link invariants. The underlying reason becomes clear in Witten’s theory as

we shall see.


