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I. UNBOUNDED ONE PARTICLE HAMILTONIANS
by
Shigeki Aida

Dedicated to Jean-Michel Bismut on the occasion of his 60" birthday

Abstract. — We study a semi-classical limit of the lowest eigenvalue of a Schrédinger
operator on a Wiener space. The Schrddinger operator is a perturbation of the sec-
ond quantization operator of an unbounded self-adjoint operator by a C3-potential
function. This result is an extension of [1].

Résumé (Limite semi-classique de la plus petite valeur propre d’un opérateur de Schrodinger sur
I’espace de Wiener: cas d’un Hamiltonien non borné a une particule.)

Nous étudions le comportement semi-classique de la plus petite valeur propre
d’un opérateur de Schrodinger sur ’espace de Wiener. L’opérateur de Schrodinger
est obtenu par perturbation de l'opérateur de seconde quantification associé a un
opérateur non-borné autoadjoint donné par un potentiel C3. Ce résultat est une
extension de [1].

1. Introduction

In [1], we studied the semi-classical limit of the lowest eigenvalue of Schrodinger
operators which are perturbations of the number operator. In that case, one particle
Hamiltonian (the coefficient operator of the second order differential operator) is
identity operator. However, we need to study the case where the coefficient operator
is unbounded to study P(¢)-type Hamiltonians. For example, the typical coeflicient
operator is vVm?2 — A, where m > 0 and A is the Laplace-Bertlami operator on R.
In this paper, we study the asymptotics of the lowest eigenvalue of a Schrodinger
operator in the case where the coefficient operator is unbounded linear operator and
the potential function is C®. In P(¢)-type model cases, the potential functions are
defined by using a renormalization and they are not continuous. In [2], we studied
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2 S. AIDA

Schrédinger operators on path spaces over Riemannian manifolds. In that case, the
differential operators are variable coefficient ones and the coefficient operators are not
bounded linear because they contain stochastic integrals. Moreover, the dependence on
the path of the coefficients are discontinuous in the natural topology. The discontinuity
comes from the discontinuity of solutions of stochastic differential equations as a
functional of Brownian motion. Thus, we need to consider two kind of discontinuity
for potential functions and coefficient operators in that case. But, the difficulties are
different from that of the P(¢)-type potentials. We will study semi-classical limit of
the lowest eigenvalue of a P(¢)2-Hamiltonian on a finite interval in [3].

2. Preliminaries

Let (W, H, 1) be an abstract Wiener space. That is,

(i) H is a separable Hilbert space and W is a separable Banach space. Moreover
H is continuously and densely embedded into W,
(ii) p is the unique Gaussian measure on W such that for any ¢ € W*,

/ eV =Tow) gy () = =1l
w

Here we use the natural inclusion and the identification by the Riesz theorem
W*C H*~H.

In this paper, we assume that W is a Hilbert space. This is equivalent to that
there exists a positive self-adjoint trace class operator S such that W is a completion
of H with respect to the Hilbert norm ||v/Sh||z. That is, ||h|lw = ||[V/Sh||g for all
h € H. We denote the sets of bounded linear operators, Hilbert-Schmidt operators,
trace class operators on H by L(H),L1(H),L2(H). Also we denote their operator
norms, trace norms, Hilbert-Schmidt norms by || ||, || |1, || ||2, respectively. For A > 0,
we define the new measure py on W by ux(E) = p (ﬁE) (E C W). Now we define
our Schrédinger operators.

Definition 2.1. — Let A be a strictly positive self-adjoint operator on H. That is,
we assume that info(A) > 0, where o(A) denotes the spectral set of A. We de-
note ca = info(A?). We denote by FCX (W) the space of all smooth cylindrical
functions f(w) = F(p1(w),...,pn(w)) (F € CPR™),0; € W* Nyueny D(A™)). For
such a f, we define Df(w) = Y.i_, 0;F(w)p; € H. Here we use the identifica-
tion @; € W* C H* ~ H and 0;F(w) denotes the partial derivative with respect
to the i-th variable. Moreover we define Daf(w) = Y ieq 0;F(w)Ap;. We define a
Dirichlet form on L*(W,dix) by Exa(fs f) = Joy 1Daf(w)Bydpin(w). —La.a de-
notes the generator. Let V be a real-valued measurable function on W such that
V € NasoL'(W,py). Under the assumption that for all A > 0, &xav(f,f) =
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SEMI-CLASSICAL LIMIT 3

Exalfy )+ [y XV (w) f(w)?dux(w) (f € FCT(W)) is a lower bounded symmet-
ric form, we denote the generator of the smallest closed extension by —Ly 4,v. Also
let E0(>\, A, V) = inf O'(—L)\7A’V).

Remark 2.2. — (1) —Ljy 4 can be viewed as the second quantization of A% on H. Let
H = H'/?(R) be the Hilbert space with the norm ||h||%, = [, |(m? — A)Y*h(z)|?dz,
where m > 0. Consider A = (m? — A)'/* on H. In this case, —L; 4 is the time 0 field
free Hamiltonian in P(¢)s-model. However note that —L; 4 is usually identified with
the second quantization of vm2 — A on H* = H~/2(R). See also Example 3.3.

(2) In [1, 5], the Schrédinger operator with semi-classical parameter X is defined in
a different way. Let Vy(w) = AV (%) The semi-classical limit of —Lq 4 + V) on
L?(W,dp) is studied in the above papers. However note that this operator is unitarily
equivalent to —Ly 4.y /A on L%(W, ). We adopt the similar definition to —Ly 4 v in
the case of Schrodinger operators on path spaces over Riemannian manifolds because
the scaling w/ v/ can not defined on the curved spaces but the measure corresponding
to py can be defined on curves spaces too. See Remark 5.3 in [1] and [2].

Let us introduce the following assumptions on potential functions of Schrédinger
operators.

Assumption 2.3. — The following assumptions (Al), (A2) are standard in semi-
classical analysis. (A4) assures that the symmetric form &y 4y is bounded from
below by Corollary 2.8 (2). Note that (A5) implies that A is an unbounded operator.

(A1) V is a C?-function on H. Let U(h) = ||AR||} + V(h) (h € D(A)). Then
mingep(4) U(h) = 0 and the zero point set is a finite set N = {hy,...,h,}.

(A2) %DQU(hi) = %AQ + K is a strictly positive self-adjoint operator on H, where
K; = iD?V(h;) € L(H, H).

(A3) V can be extended to a C3-function on W such that for any R > 0and 0 < k < 3

sup {||ID*V (w)llLwx-.xwr) | [wlw < R} < C(R) < co.

(A4) V can be extended to a continuous function on W and there exists p > 1 such
that

A
limsup A~ ! log/ e % V(w)d,ux(w) < 00,
w

A—o00

(A5) There exists 79 > 1 such that A= € Ly(H).

For r > 0 and z € W,k € H, we denote B,(z) = {we W | ||lw—z||lw <r} and
B(k) = {h € H | |h—kly <r}.

Lemma 2.4. — (1) Suppose that (A4) holds or inf{V(h) | h € H} > —oo. Then we
have lim (%‘nhn%{ + V(h)) = +oo.

12l —o0
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4 S. AIDA

(2) Assume (A1), the same assumptions in (1) and for any L > 0, sup{|V (h)| | ||k|lg <
L} < co. Then for any € > 0,

k(e) :=1inf {U(h) | h € {U}_;Bc(h;)}°} > 0.

Proof. — (1) If inf{V'(h) | h € H} > —o0, the statement is trivial. We assume (A4).

2pA
Let C be a positive number such that limsup, ., A" log [, e_%vdu)\ < C. Take
R > 0. Then for sufficiently large A\, we have

%log /W exp (—% (RAV(w)V (—R))) dpy(w)
< %log (/W <e_ R + exp (—%(V(w) v (—R))> d/m(w)))
< ilog (e)‘c + e_%R) <C+ 1052.

By the Large deviation estimate, we have

2p
CA

sup (=31l = 2 (-R)V VW) A R)) < C:

Since R is an arbitrary number, we get

C~CA

~SL|nlE - pv () < for all h e H.

Suppose that there exists {h,} such that ||h,||z — oo and
sup,, (||hy|l% + V(hy)) =: 1 < +00. Then lim,, o V (hy) = —0c. Hence

Cc Cc
Ml 4V () = “Fllallfy +V () 4 (0 = DV (hn) < L (p = DV () — 0.

This is a contradiction. So we are done.
(2) By the result in (1), we need to prove that for sufficiently large positive number L,

inf{U(R) | h € Brz(0) N (U, B.(hs))°} > 0.

Suppose that there exists {¢;} C B g (0) N (U?; B:(h;))° such that lim;_,o, U(yp;) =
0. By the assumption, there exists a subsequence {(;(;)} which converges to a certain
element po, € H weakly. Since ¢l|Apii 1% = Ulpiy) =V (@i0i))s sup; | Awugiyllar < oo
holds. Hence again by choosing a subsequence {¢,;)}, Agp(i) also converges to some
®oo weakly. By the Banach-Saks theorem, we see that ¢, € D(A) and Ao, = ¢oo. On
the other hand, since the embedding H C W is compact, lim; oo [|@p(i) — Poollw = 0
which implies lim; oo V(@p(:)) = V(¢0)- Since || Apoo||3; < liminfi_ oo [|App |3, we
obtain U(¢e) < liminf; . U(pp)) = 0. This implies 9o € N and ¢,y € B:(h;)
for some large ¢ and 1 < j < n. This is a contradiction. O
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SEMI-CLASSICAL LIMIT 5

Lemma 2.5. — Let A be a strictly positive self-adjoint operator and K be a trace class
self-adjoint operator on H. Assume that A% + K is also a strictly positive operator.
Then VA2 + K — A€ Ly(H) and

I
[V -a|, < o A ey

Proof. — We prove this in three steps: (i) A = I+ T and T is a trace class operator,
(ii) A is a bounded linear operator, (iii) General cases.

(i) We denote S; = VAZ + K and Sy = A. Note that S; — Sy = VA2 + K —
is a trace class operator. We denote the all eigenvalues and corresponding complete
orthonormal system of S; — Sg by {a,} and {e,}. Then

[(Ken,en)l = [ ((S = S3)en,en) |

}((51(51 — So) + (Sl — 50)51 — (Sl — 50)2) en,en)}
laen ((S1 4+ So)en, €n)

|y | inf o(S1 + Sp).

\Y)

This implies that
1Kl
VA2+ K- A :E o, .
| I — 1| < fo(VA2+ K + A)

(ii) Let {u.m, } be all eigenvectors of K whichisa c.o.n.s. of H. Set Pp,h = >"7%; (h, u;)u;
and A,, = \/P,,A2P,, + Pt. Then A2 — A2 A,, — A converge strongly. On the
other hand, A2, + K = P,,(A2+ K)P,, + P,-(Iy + P K P;-) P;t. Hence for sufficiently
large m, we have

min {inf o(v/A2, + K),inf 0(4y,)) > min (inf o (/A% + K),1/2,inf o(4)) .

Since A,, — Iy is a trace class operator, by (i),

[EigI
A2 K- A < .
VAL + K = Al < o7+ 1), inf o (4),172)

By taking the limit m — oo, we see that v/A2 + K — A € L (H). Therefore again by
the same argument as in (i), we can prove (ii).

(iii) Let xn(z) be a function such that x,(z) = 1 for x < n and x,(z) = 0 for
z > n. Then x,(A) is a projection operator which commutes with A. Let A, =
Axn(A) + (1 = xn(A4)) and Ky, = xn(A)Kxn(A). Then

VAT Ry — A = \/A2(A) T xa(A) K n(A) — Axa(4)
\/m A, € L(Im(xn(4)))
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6 S. AIDA

By (ii), we have
[ Kl
2.1 A2+ K, —Alp <
21) VA% + K, - A| infa(\/AQXn(A)+Xn(A)KXn(A)+AX"(A))
1K 12
min (infU(\/m),infU(A)).

IA

Forl>n>m,
(M_An)_(\/m_Am) = \/A2+Kn_\/A2+Km
= AT+ K, - /A2 +K,.

This and (ii) implies that /A2 + K,, — A,, converges in the trace norm. It is not
difficult to check that the strong limit is equal to v A2 + K — A. Therefore, (2.1)
implies the conclusion. O

Proposition 2.6. — Let A be a strictly positive self-adjoint operator. For a trace class
self-adjoint operator K on H and h € D(A?), we set

1 1
Vicn(w) = 71 A4hI% = 3 (A%, w) + (K (w = h),w = h) .

We assume that A? + 4K is a strictly positive self-adjoint operator and AK A can be
extended to a trace class operator. Then &x Avy, is a symmetric form bounded from
below and Eg(X, A, Vi p) = Ae(A, K) holds, where

(2.2) e(A,K) = %tr (\/A4 +4AKA — AQ) .

Moreover it is the lowest eigenvalue of —Ly a,v, , and the corresponding normalized
positive eigenfunction is

QX,A,VK,;L (w) = det (IH + TK)1/4

X exp {—2 ((A7H{A* + 4AKAY2A™ — Ig) (w — h), (w — h))}

A A
xoxp (5 (h,w) = JIIE )
where Ty = A7 (VA + 4AKA — A?) AL,

Proof. — If A is bounded linear operator, the proof is a straightforward calcu-
lation. Suppose that A is unbounded. Let A, and K, be the operators which
are defined in the proof of (iii) in Lemma 2.5. Then AK,A = A,K,A,. Thus
(A71{A* + 4AK,A}/?A~" — Iy) € L1(H) Ny D(A*). Therefore for sufficiently large
n, Q5 4,vi, » € L?(pa) and the simple calculation shows that

—Lx avie, n 00 A, vk, = Ae(A, Kn) QA vi, -
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SEMI-CLASSICAL LIMIT 7

Letting n — oo, we have
_L)\,A,VKYhQ)\,A,VKYh_ = )\e(A)K)QA,A,VK’h'
To prove that Ae(A, K) = inf o (—Lx, a,vy., ), We note that for any f € FCF (W), it
holds that
Ernin 1 5) = [ DAy M v (0)dis ()

+ Xe(A, K)||f]|32 O

(1x)"

We use the following estimate to prove a lower bound in Lemma 3.4. We refer the
reader to [7, 12, 14] for this estimate.

Theorem 2.7 (NGS estimate). — Let &(f, f) be a closed form on L2*(X,m), where
(X,F,m) is a probability space. Assume that there exists o > 0 such that for any

feD(é),
| £ 108 (F@ 15 ) dmie) < (5.1,
Then for any bounded measurable function V, it holds that

@3 &GN+ [ VE@i@rdm >~ os ([ e @) 171

The following follows from the above estimate and Gross’s logarithmic Sobolev
inequality [7]: For any f € FCT (W),

[ w108 (£GP /1) dirtw) < 5 [ IDF@Erdir )

Originally NGS(=Nelson, Glimm, Segal) estimate (2.3) was proved by the hyper-
contractivity of the corresponding semigroup. See [14]. Corollary 2.8 (2) is proved
by Lemma 4.5 in [2] which follows from Gross’s log-Sobolev inequalities and finite
dimensional approximations.

Corollary 2.8. — (1) It holds that

2
Ey(N\ A V) > —)\ﬁlog (/ exp <——>\V> d/u(?u)) .
2 w CA

(2) Suppose that there exists a Hilbert-Schmidt operator T such that A= I+T. Then

> —% log {/W exp <—2)\V (w) =X : (Tw,w) :p —f||Tw||H> dpx(w )}

A A
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8 S. AIDA

In (2.4),: (Tw,w) :,,, is defined by the limit lim,,_, o {(PnTin, w) — %trPnTPn},
where P, is a projection on to a finite dimensional subspace of H such that P, T Iy.
det () denotes the Carleman-Fredholm determinant.

3. Results

Theorem 3.1 (Bounded case). — We assume that A is a bounded linear operator and
satisfies the assumptions (Al), (A2), (A3), (A4). Then we have

Eqo(M\ AV
(3.1) lim E0AV) min e(A, K;).

A— o0 A 1<i<n

In the unbounded case, we can prove the following. The assumption is too strong
to cover the P(¢)-type Hamiltonian. We will relax the assumptions and discuss such
a case in a separate paper.

Theorem 3.2 (Unbounded case). — Assume (A5). Let v > 1+0 and S = A=27. Then
AK;A is a trace class operator and (2.2) is well-defined. Furthermore, we assume that

(A1), (A2), (A3), (A4) hold. Then the asymptotics (3.1) holds.
Example 3.3. — Let I = [-L, 1] (I > 0) be an interval of R. Let —A be the Laplacian

202
with periodic boundary condition on X = L?(I — R,dz). Let m > 0. For a € R, let
H = D((m? — A)*/2) and ||z = [(m? — A)*/?h] .
(1) Let H = H'?. Then for any £ > 0, we can take W = H°. Let 0 < ¢ < 1/2.
Then using the inclusion and the identification H'/?2 ¢ H® = (H™¢)*, we can see
that u satisfies that [, - (w, h)3 du(w) = ||(m? — A)~Y*h|% for h € H. Let
U : X — H'/? be the natural isometry operator and define A = U(m? — A)Y/4U~1.
This is a standard example in P(¢)2-model on finite interval. Let P(u) SIM apuF
be a polynomial with real coefficients with agp; > 0. For h € H, V(h) = [, P ; P(h(z))dz
is well-defined by the Sobolev embedding theorem. However H ¢ is the space of
distribution and P(w(x)) is not defined for w € H~¢. Actually, it should be defined
by [, : P(w(z)) :p, dz where : P(w(z)) : denotes the Wick product. However this
is not a smooth function on W = H~¢ and cannot be covered by Theorem 3.2. This
will be studied in [3].
(2) Let H = H?. Then p can be defined on W = H!. For 0 < § < 1/2, let A =
U(m? — A)z(G=9U -1, where U is the natural isometry from X to H. Let Q(u) =
im1=29y? + P(u), where P(u) is the polynomial defined in (1). Let {c1,...,c,} be
the minimum pomts of @ and asssume that Q”(¢;) > 0 (1 < ¢ < n). Again let
= [, P(h(z))dz for h € H. Then we see that V(h) — I min @ can be extended to
a smooth functlon V(w) on W. Then the zero point set of U(h) = L||Ah||% + V (k)
is the set of the constant functions {ci,...,c,}. For this V and A, all assumptions in
Theorem 3.2 hold with v =1 + % and v =1+ .
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SEMI-CLASSICAL LIMIT 9

We prove these theorems after preparations. Here we just prove AK;A € Li(H)
under (A5). Since V € C2(W), there exists a bounded linear operator K; on W such
that D2V (h;)(u,v) = (Kiu,v)w for any u,v € W. By the definition of the norm of
W, there exists K; € L(H) such that K; = AYK;A~7. Thus for any u,v € HCW,

D2V (h;)(u,v) = (K’Z—u,v)w = (A_WAVf(iA_Wu,A_"’v)H = <A_7I%iA_7u,v)H

This shows K; = A~7K;A~" and AK;A = A7 K;A'~". Because y—12>n7, A7
is a Hilbert-Schmidt operator and this implies AK; A is a trace class operator on H.
In our main theorems, we may assume that c4 = 1. Because, if Theorems hold

in the case where c4 = 1, then it implies that Fy (/\, \/%, %) =e (\/‘27, %) . This

shows the general cases.
The proof of upper bound is standard. Let x be a smooth function on R satisfying
0<x(z) <1, x(x) =1for z € [-1,1] and x(z) =0 for |z| > 2. For 2/3 < § < 1, set

Onavie, . (W) = 23 A v, ., (w)x (Allw = Rillfy) -

Here Z, is a normalization constant which makes the L?-norm to be equal to 1.
It holds that limy_. Zx = 1. Since h; is a minimizer of U, for any k € D(A),
1 (Ah;, Ak) gy + DV (h;)(k) = 0. The fact DV (h;) € H* implies that h; € D(A?) and
DV (h;) = —%Azhi. Using this and by the Taylor expansion, we have
(3.2) V(w) = V(hi)+ DV(hi)(w— hi) + (K (w — hi),w — hy)
1
1 1
= Z||Ahi||%r -3 (A%hi, w) + (Ki(w — hi), w — h;) + Ry, (w)
= VKi,hi (’U)) + Rhi (’U))

Here we denote the remainder term by Ry, (w). If x(A|lw — hi||%,) # 0, then
|Rp, (w)| < CA~3%/2, This and the tail estimate of the Gaussian measure shows that

oxAv (Q,\,A,VKI.,,H. ; Q,\,A,vKi,hi) = Eo(\ A K;) + 0%,

This proves the upper bound.

To prove the lower bound estimates, it suffices to prove the following Lemma 3.4.
Let R be a sufficiently large positive number. Set x; r(w) = x (R|lw — h||E) (1 <
i <n) and xo,r(w) = /1 - Y7y Xi,r (W)

Lemma 3.4. — Let us assume that the conditions of either Theorem 3.1 or Theo-
rem 3.2 hold.
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