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CONGRUENCE SUBGROUP PROBLEM 

FOR ALGEBRAIC GROUPS: OLD AND NEW 

A . S. R A P I N C H U K * 

Let G C GL n be an algebraic group defined over an algebraic number 
field K. Let 5 be a finite subset of the set VK of all valuations of K, containing 
the set V*£ of archimedean valuations. Denote by O(S) the ring of 5-integers 
in K and by GQ(S) the group of 5-units in G. To any nonzero ideal a C O(S) 
there corresponds the congruence subgroup 

Go(s)(*) = { 9 6 G0(s) \ 9 = En (mod a)} , 

which is a normal subgroup of finite index in GQ(S)- The initial statement of 
the Congruence Subgroup Problem was : 

(1) Does any normal subgroup of finite index in GQ(S) contain a suitable 
congruence subgroup Go(s)(a) ? 

In fact, it was found by F. Klein as far back as 1880 that for the group 
SL2(Z) the answer to question (1) is "no". So a more accurate statement of the 
problem should be: for which G and S does (1) have an affirmative answer ? 
However, till the mid sixties there were no nontrivial examples of groups 
for which this is actually true. Only in 1965 did Bass-Lazard-Serre [1] and 
Mennicke [10] give a positive solution to the congruence subgroup problem for 
SLn(Z) (n > 3). In the course of further investigations, it appeared convenient 
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to introduce the object measuring deviation from the positive solution of (1) 
and then to view the congruence subgroup problem as the problem of its 
computation. This object (called the congruence kernel) was defined by Serre 
[27] as follows. 

Let us introduce on the group GK of lif-rational points two HausdorfF 
topologies, ra and r c, called ^-arithmetic topology and 5-congruence topol
ogy, respectively. The complete system of neighbourhoods of unity for ra 

(resp., r c) consists of all normal subgroups of finite index (resp., all congruence 
subgroups) in (?0(5). It is easy to show that these topologies satisfy all the 
properties that ensure the existence of the corresponding ^-arithmetic and 
5-congruence completions G and G. Since ra is stronger than r c, the identity 
map 

(Gjr,r„) -*(GK,Te) 

is continuous. Therefore it can be extended to a continuous homomorphism 
7r: G —• G of the completions. By definition, CS(G) = Kenr is the congruence 
kernel 

PROPOSITION 1. The projection 7r is surjective and CS(G) is a profinite 
group. CS(G) is trivial if and only if the congruence subgroup problem in the 
form (1) has an affirmative solution for Go(s)-

Thus, in general, the congruence kernel CS(G) measures deviation from 
a positive answer to the congruence subgroup problem. So, by the modern 
statement of the problem we mean the problem of determination of CS(G). It 
is well-known (see for example [23]) that this problem can be reduced to the 
main case of an (absolutely) simple, simply connected algebraic group G. Here 
we shall be exclusively concerned with that case. As we have already remarked, 
the first positive result on the congruence subgroup problem for such groups 
is due to Bass-Lazard-Serre [1] and Mennicke [10], who studied the case of 
SLn(Z) (n > 3). Then Bass-Milnor-Serre [2] completed the investigation of 
SLn [n > 3) and Sp 2 n (n > 2) over an arbitrary number field JT, after 
obtaining a description of CS(G) in the following form: 

(2) Cs(G) = i 1 l f 3 V G 5 S U C h t h a t K v * C 

U I E(K) otherwise, 

where E(K) is the group of all roots of unity in K. By further developing the 
methods of [2], Matsumoto [9] extended (2) to all universal Chevalley groups 
different from SL2 (the case of twisted Chevalley groups was considered by 
Deodhar [4]). In the case G = SL2, first Mennicke [11] gave a positive solution 
to the congruence subgroup problem for the group SL2(Z[-]), and then Serre 
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[27] studied the general situation and showed that, provided Card 5 > 1, the 
answer is of the form (2). On analysing the obtained results, Serre [27] for
mulated the following congruence subgroup conjecture, which gives sufficient 
conditions for CS(G) to be finite or infinite, in terms of the so-called S-rank : 

rang5 G = ^2 ™n8Kv G, 
ves 

where rangp G denotes the rank of the group G over the field P, i.e., the 
dimension of a maximal P-split subtorus in G. 

CONJECTURE 1. Let G be simple and simply connected. Then in case 
rang5 G > 2 and G is Kv-isotropic for all v £ S \ V£, the congruence kernel 
CS(G) should be finite. In case rang5 G — 1, it should be infinite. 

The case of finite CS(G) is the most interesting and important for applica
tions. In that case, we shall say that the group T = GQ^S) has the congruence 
subgroup property (CSP). In this paper we are going to describe the class of 
groups for which (CSP) is known to hold and outline some new methods of 
attacking the congruence subgroup problem, which, as we hope, will enable 
us to enlarge this class considerably. 

Let us first describe the general scheme for calculating the congruence 
kernel C = CS(G). It follows from our definitions that C can be determined 
from the exact sequence: 

(3) i _ C - + G ^ G - * l 

Let us consider the initial segment of the Hochschild-Serre spectral sequence 
corresponding to (3): 

(4) H\G) 2* H\G) — Hx(cf X H2(G), 

where HL(*) denotes the i-th continuous cohomology group with coefficients 
in the one-dimensional torus E/Z. The term JT1(C ,)G in (4) is connected with 
C as follows: _ 

H 1 ^ = Hom(C/[C,G] , R/Z). 

So one can reconstruct C from Jff1(C)G only under the assumption that C 
is central, i.e., lies in the centre of G. Indeed, in this case firl(C)G coincides 
with the Pontryagin dual C* of C. Suppose now that C is central. Then we 
have the following exact sequence: 

1 -> Cokery? -> C* - » I m ^ -> 1. 
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Ignoring the trivial case rang 5G = 0, in which GQ^S) is finite and conse
quently CS(G) = 1, we immediately obtain from the strong approximation 
theorem that the group G can be identified with the group GA(S) of 5-adeles. 
Then, using the fact that the sequence (3) splits over the group GK and is 
the "universal" sequence with this property, one can show that Im tp coincides 
with the so-called metaplectic kernel 

M(G,S) = K e r ( # 2 ( G V ) ) -+H2(GK)), 

where GK is endowed with the discrete topology. On the other hand 

Cokerp* [GK,GK]/[GK,GK], 

where the bar denotes closure in GK for the 5-arithmetic topology. Taking 
into account that M(G,5) is always finite (see [17]) and that [GK>GK] has 
finite index in GK (see [8]), we arrive at the following 

PROPOSITION 2. If C is central then it is finite. If, moreover, Coker<£> = 1 
thenC* ~M{G,S). 

In fact, at present it is known that Cokery? is indeed trivial for most 
cases. This depends on the validity for GK of the following conjecture, which 
describes the normal structure. (This conjecture was formulated by Platonov 
[13] in the form of a local-to-global principle for projective simplicity and then 
by Margulis [8] in the final form). 

CONJECTURE 2. Let — VK \ V* be the set of nonarchimedean 
valuations, and let T = {v £ \ G is Kv-anisotropic}. Then for any 
noncentral, normal subgroup N C GK there is an open normal subgroup 
W C GT = n GKV

 S U C A ^at N = W n GK- In other words, any noncentral 

normal subgroup is open (equivalently, closed) in the T-adic topology. 

If Conjecture 2 is true for GK then we say that GK has a standard 
description of normal subgroups. In the situation of Conjecture 1 we have 
S n T = 0 , and so the triviality of Cokery? is equivalent to saying that 
Conjecture 2 holds for N = [GK>GK]- But the latter statement is actually 
true for all groups, with the possible exception of some anisotropic forms of 
types 2 A n , 3 ' 6 Z ) 4 and EQ (see [14]). Thus, in most cases, the calculation of C 
(provided it is central) reduces to that of M(G,S). 

The first computations of the metaplectic kernel had been carried out 
by Moore [12] and Matsumoto [9]. They obtained the description of M(G,S) 
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