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L A R G E D E V I A T I O N S F O R T H R E E D I M E N S I O N A L 

S U P E R C R I T I C A L P E R C O L A T I O N 

Raphaël CERF 

Abstract. We consider Bernoulli bond percolation on the three dimensional cu­
bic lattice in the supercritical regime. We prove a large deviation principle for 
the rescaled configuration, from which a picture of the Wulff crystal of the model 
emerges. 

Resume (Grandes déviations pour la percolation supercritique en dimen­
sion trois). Nous considérons la percolation Bernoulli sur les arêtes du réseau 
cubique de dimension trois dans le régime supercritique. Nous prouvons un principe 
de grande déviation pour la configuration renormalisée, duquel émerge une image 
du cristal de Wulff du modèle. 
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C H A P T E R 1 

INTRODUCTION 

The ground-breaking monograph of Dobrushin, Kotecky and Shlosman [31] has 
initiated in the past years an intense research activity around the study of phase 
separation for the two dimensional Ising model (see [21,46,47,48,49,58,59,66,67,68]). 
The so-called Wulff construction in this context is now fairly well understood. The 
next challenge is to analyze phase separation and coexistence in higher dimensions. 
The aim of this work is to propose a way to do that for the three dimensional 
Bernoulli percolation model. 

We consider Bernoulli bond percolation on the three dimensional lattice Z3. Edges 
between nearest neighbours are independently open with probability p and closed 
with probability 1 — p. It is known that this model has a phase transition at a 
value pc strictly between 0 and 1: for p < pc the open clusters are finite and for 
p > pc there exists a unique infinite open cluster Coo (see [42]). We focus here on the 
supercritical regime where p> pc. Aside from the infinite cluster, the configuration 
contains finite clusters of arbitrary large sizes. We wish to understand the geometry 
of these large clusters. The presence at a particular location of a large finite cluster 
is an event of low probability: for Bernoulli percolation in dimension o?, for p > pc, 
there exist two positive constants c\, C2 such that 

Vn G N exp(-c1n^-1)/rf) < P{n < cardC(O) < oo) < exp(-c2n^-1)/d) , 

where C(0) is the open cluster containing the origin. This is a result from Kesten 
and Zhang [50] (It was proved under the assumption that p is strictly larger than 
the limit of the slab critical points. Grimmett and Marstrand proved that this limit 
coincides with pc, see [43] or the second edition of [42]). An historic account of 
the successive refinements of this type of bounds is given in [3]. This estimate is 
based on the fact that the occurrence of a large finite cluster is due to a surface 
effect. Indeed at the frontier of a large open cluster C, there is a set deC of closed 
edges, called the edge boundary of C, whose macroscopic components look like a 
large surface separating the sites of the cluster from the outside world. 

Alexander, Chayes and Chayes have obtained much more precise results in the 
two dimensional case [3] (which were further refined by Alexander [2]). Let us sum 
up the main points of their work. In dimension two, a component of the edge 
boundary is a closed curve of the plane. The most likely curves to realize the event 
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2 CHAPTER 1. INTRODUCTION 

{n < cardC(O) < 00} are close to a very specific deterministic curve, namely the 
boundary of the so-called Wulff crystal of the model. More precisely, it is possible 
to define an angle dependent surface tension o(y) for the model, which characterizes 
the exponential decay of the probability of having a long flat interface of closed edges 
orthogonal to the direction v. Consider next the variational problem of minimizing 
the cr-surface energy of a closed curve 7 (that is the linear integral of a{y) along 7, 
where v is the normal to 7) under the constraint that the curve 7 encloses an area at 
least one. The unique solution of this problem is the boundary of a suitable dilation 
of the Wulff crystal of a 

Wa = { # 6 M2 : x - v < a{v) for all unit vectors v } . 

Besides, the probability that the cluster (7(0) has inside the macroscopic components 
of deC(0) a density larger than the typical density 0(p) of the infinite cluster is of 
order exp(—const card (7(0)), because this event requires a volume effect. Hence, 
up to surface order large deviation events, the area enclosed by the macroscopic 
components of deC(0) and 0_1card(7(O) are comparable. Finally, 

lim - ^ l n P ( n < card(7(0) < 00) = -{0areadWa)~1/2 / a(yw (x)) dx . 
n->oo y/n JdW(T 

Furthermore the solutions of the previous variational problem are stable with respect 
to the Hausdorff distance between curves, that is, up to translations, any minimizing 
sequence converges towards the boundary of a suitable dilated Wulff crystal. As a 
consequence, conditionally on the event {n < card (7(0) < 00}, with probability 
tending rapidly to 1 as n goes to 00 (say faster than any inverse power of n), the 
Hausdorff distance between the rescaled curve n-1/2(outer component of deC(0)) 
and the boundary of the dilated Wulff crystal {6 area^Wo-)-1/2Wo- is less than 
any fixed positive real number. Alexander, Chayes and Chayes prove also a sin­
gle droplet Theorem, which is close in spirit to the Wulff construction Theorem of 
Dobrushin, Kotecky and Shlosman [31] for the two dimensional Ising model: for 
A < (diam>V(7)~2area9H;<7, for any positive 77, conditionally on the event 

{ cardCoo H [-L/2,L/2]2 < (1 - \)0L2 } , 

(CQO is the infinite cluster), with probability tending rapidly to one as L goes 
to 00, there is inside [—L/2,L/2]2 a finite open cluster of cardinality approxima-
tively OXL2 whose edge boundary is at a Hausdorff distance less than rjL from 
X1/2L ( a r e a d W ^ ) - 1 / 2 ^ . 

Our original motivation was to prove similar results in the three dimensional case. 
As noted in [3,31], a new formulation of the results themselves is required in higher 
dimension: indeed the Hausdorff distance between the boundaries is not adequate 
any more, because very thin and long filaments create insignificant surface energy 
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CHAPTER 1. INTRODUCTION 3 

while increasing dramatically the Hausdorff distance. However the main obstacle 
so far seems to have been the extension of the skeleton coarse graining technique 
[49] which relies on the possibility of approximating in a suitable way a polygonal 
line on the lattice by a coarser one and on a combinatorial bound for the number of 
polygonal lines. The structure of two dimensional surfaces is so rich compared to the 
one of curves that it seems hard to find a similar combinatorial argument in higher 
dimension (see the introduction of [49]). Therefore a new strategy is needed. A 
natural way is to leave the discrete setting and to try to work from the start into the 
continuum. The combinatorial argument should then be replaced by a compactness 
property. Thus we must embed our objects into a continuous topological space in 
which the level sets of the surface energy are compact. If the volume happened to be 
continuous, we would have in addition existence of solutions for our variational prob­
lems, a highly desirable feature. This picture has already a taste of large deviations 
theory: the surface energy should be a good rate function. Subsequently, why not 
seek for a large deviation principle (in this yet undefined ideal space) governed by 
the surface energy? The results concerning the Wulff crystal would then be natural 
consequences of the large deviation principle; the law of the random objects under a 
volume constraint would concentrate exponentially fast around the ones minimizing 
the surface energy with respect to this volume constraint. Indeed, whenever a large 
deviation principle holds, the random objects solve automatically the variational 
problems associated with the rate function. Thus it is very reasonable to think that 
the probabilistic results on the Wulff crystal (at least those dealing with rough es­
timates) might be included in a general large deviations setting. Large deviations 
theory itself does not provide the required probabilistic tools, yet it suggests efficient 
abstract guidelines to attack the problem. 

Although there exists a substantial literature devoted to the study of stochastic 
geometry, we found no existing result on large deviations for general random sets. 
Thus we started by proving the simplest such result, namely the analog of the Cramer 
Theorem for random sets [17]. We then tested the feasibility of some aspects of 
the large deviations approach to the Wulff crystal in the case of two dimensional 
Bernoulli percolation [18]. There we prove large deviation principles for the finite 
cluster shape in the Hausdorff and L1 metric, but with the help of the skeleton 
coarse graining technique, instead of working from the start in the continuum. 

To achieve this appealing programme, we should first find the ideal continuous 
space to work in. It is clear that this space must contain the smooth surfaces T and 
that the surface energy X(T) of a smooth surface T has to be 

К Г ) = . 
Jr 

where VY{X) is the normal vector to Y at x, T{V) is the surface tension of the model 
in the direction v and V? is the two dimensional Hausdorff measure in M 3. The 
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