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CANTOR STRUCTURE OF THE SPECTRUM
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RESUME. Dans ce travail nous continuous notre etude de 1'operateur de
Harper, coshD+cosx dans L^(R), par des methodes d'analyse microlocale et
de renormallsatlon. On obttent une description assez complete du spectre dans
Ie cas ou h/2ir est irrationnel avec un developpement en fraction continue :
h/2Tr=1/Cqo+ 1 / (Q1+•• • ) )> si q,-€Z, IqJ^Co et CQ>O est assez grand. En
particulier Ie spectre est un ensemble de Cantor de mesure 0. Nos resultats
sont aussi valables pour certaines perturbations de 1'operateur de Harper et on
donne une application a 1'operateur de Schrodinger magnetique periodique sur
R2.

ABSTRACT. In this paper we continue our study of Harper's operator
coshD+cosx in L^R), by means of microlocal analysis and renormalization.
A rather complete description of the spectrum is obtained in the case when
h/2'rr is irrationnel and has a continued function expansion :
h/2TT=1/(qo+1/(qi+.-.)) with qj€Z, I qj ^CQ, provided that CQ>O is
sufficiently large. In particular, the spectrum is a Cantor set of measure 0.
Our results are also valid for certain perturbations of Harper's operator and an
application to the periodic magnetic Schrodinger operator on R2 is given.
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0. Introduction.
This work is a continuation of our study, started in [HS1,2], of the

spectrum of Harper's operator, by the use of semi-classical methods. If heR,
h ^0, then the problem is to study the union of the spectra, when 9 varies in
R, of the operators in JSO^Z),!2^)), given by,
(0.1) Heu(n)=^(u(n+1)+u(n-1))+cos(hn+9)u(n).

As a set, this union of spectra coincides with the spectrum of,
(0.2) Po=cos(hD^)+cos(x)
in ^(L^RU^R)), where D^i-^/ax, so that cos(hD^)=^(rh+t-h)» where
^u(x)=u(x-h). Inspired by ideas of Wilkinson [W1] , we obtained a partial
Cantor structure result for the spectrum, SP(PQ) of PQ under the assumption
that h/2rr is irrational and,
(0.3) h/2TT=1/(qi+1/(q2+...)), QjeZ, 1$ j<oo,
and
(0.4) Iqj I^Co,
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for some sufficiently large constant CQ. (See Theoreme 1 in [HS1].) Roughly,
our result was that if CQ>° and ^ C0>o is sufficiently large (as a function of
&o)> then outside ['Co'^ol the spectrum of PQ is contained in a union of
intervals, J, of width exp(-^ lq i l ) and such that the separation between
neighboring intervals (on the same side of l-Co^O^ 1S ^/Nll- ^ K] }s the

increasing affine function that maps Jj onto [-2,2], then outside [-Co^ol'
the set K,(J,nSp(Po)) can again be localized into a finite union of closed
intervals, having widths and separations of the same order of magnitude as for
the J, , but in terms of q^ instead of q^. This procedure can then be continued
indefinitely.

The proof of this result was obtained by applying first microlocal
analysis near a "potential well", i.e. a component of cos($)+cos(x)=jJl,
where JJL€[-2,2]\[-&o»col' 1n order to obta1n certain discrete eigenvalues,
well defined up to ©(e"1701 '1). It then followed that Sp(Po) is localized to
certain intervals, Jj, exponentially close to these eigenvalues. After that we
analyzed the tunnel effect between the potential wells, and this permitted us
to describe Sp(Po)nJj as the spectrum of a certain infinite "interaction"
matrix. Exploiting certain translation invariance properties of the resulting
matrix, we could then reduce the study of it's spectrum to that of P(x,h'D^),
the Weyl quantization of P(x,h^), (and by definition, the h'-Weyl quantization
of P(x,^),) where P=Pih is a sma11 perturbation of Po=cos(^)+cos(x). Here
h72Tr=1/(q2+1/(q3+..-))- ^or" P we could then start over again ... .

In this paper, we shall be able to eliminate the intervals, l-^o'^ol' and

obtain a fairly complete description of Sp(Po), under the assumption
(0.3),(0.4) with CQ>O sufficiently large. When trying to make this
improvement at the first level of the iteration scheme, an obvious difficulty is
that forjJL^O, PO^) ̂  close to the union of the lines ^=±x+(2k+1)TT,

keZ, and there is no more obvious localization into potential wells.



INTRODUCTION 5

As before, we can however study microlocal solutions of the
homogeneous equation, (PO~J^)U=O, and as a matter of fact, this was done
heuristically already by Azbel [AzL Away from the saddle points, (krr.iTT),
k+1c2Z+1 , the characteristic set, PO^OJI) is a smooth analytic curve, and
near a point in this part of the set, the microlocal kernel of (PQ-JJL) is a one
dimensional space, generated by a standard WKB solution. Near a saddle point
the space of microlocal solutions is two dimensional, and can be computed
more or less explicitly. If we choose for instance the point (O.iT), then an
element of the microlocal kernel near that point, is determined by its
behaviour near the open segments ](-Tr,2TT),(0,Tr)[ and ](0,Tr),(TT,0)[. Using a
microlocal study of PQ-^, we can then obtain a globally defined, well posed
"Grushin" problem,
(0.5) (Po-^l)u+R-u~=v, R^u^-^-.
where, u.veL^R), u^V^el^Z^C2). Roughly (thinking of the case, v=0),
the condition R^.u=v4' fixes the microlocal behaviour of u near all segments of
the form ]((k-1)Tf,(1+1)Tr),(kTr,lTr)[, k+1e2Z+l , and R-u~ provides a
one-dimensional inhomogeneity near each segment of the form,
](kTr,1'rr),((k+1)Tr,(1+1)Tr)[. Denoting the solution by,
(0.6) u^sEv+E+v4 ' , u~=E_v+E-^v^ ,
where all operators depend on JJL, it is easy to show that JJL belongs to the
spectrum of PQ if and only if 0 belongs to the spectrum of E- +. Now E- 4. may
be viewed as a block matrix, (E-+(o(,3))^ R^Z2 ' ^ere each entry is a 2x2
matrix. By the same procedure as for the matrix W above, we then see that
0€Sp(E-^.) iff OcSp(P), where P is a 2x2 matrix of h'-pseudodifferential
operators. After rescaling, we see that (in the most interesting spectral
region) P falls into a certain class of "strong type 2 operators". We also
define strong type 1 operators, as scalar h-pseudodifferential operators,
satisfying certain commutation relations and which are close to Po(x,hD).
Fortunately, the study of strong type 2 operators is often very close to the
study of s-type 1 operators, and we can again divide the problem into certain
potential well cases and a branching case.

An interesting feature is that we loose the linear dependence of the
spectral parameter, already after considering the first branching problem, so
we shall systematically work with operators P=PH, and define jJl-Sp(P) as
the set ofjJl such that 0 belongs to the spectrum o fF^ . Theorem 6.2 below
shows that the study of the ^-spectrum of a strong type 1
h-pseudodifferential operator sufficiently close to PQ can, when h is
sufficiently small, be localized into into a union of closed disjoint intervals,
such that the further study of the jJL-spectrum in each of these intervals leads
to an operator either of s-type 1 or 2. Theorem 9.2 gives the corresponding
result for s-type 2 operators. Theorem 9.3 is a combination of the Theorems
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6.2 and 9,2 and says that if we start with a strong type 1 operator
sufficiently close to PQ and If (0.3),(0.4) hold with CQ sufficiently large, then
we get a complete description of the ^-Spectrum by means of an infinite
sequence of localizations into finite disjoint unions of closed subintervals and
rescalings. From the additional quantitative informations stated after the
Theorems 6.2 and 9.2 about the lengths and separations of the various
intervals appearing in those theorems, combined with Theorem 9.3, we obtain
the following result (which expresses only a small part of the very precise
information that our methods produce).

Theorem 0.1. Let P=P(x,hD^) be a self-adjoint h-pseudodifferential operator
such that the corresponding Weyl symbol, P(x,$) extends holomorphically to
the "band" |Im(x,$)| <1 /& , and satisfies:
(0.7) P((x,$)+2rroO=P(x,e), for all o(ez2,
(0.8) P($,-x)=P(C,x),
(0.9) |P(x,$)-(cos($)+cos(x))|^&, when llm(x,$)l <1/e.
If (0.3),(0.4) hold with CQ>O sufficiently large, and 1 f O < c < C i with cpO
sufficienly small, then Sp(P) is of Lebesgue measure 0, has no Isolated points
and is nowhere dense. (The last statement means that Sp(P) is dense in no
non-trivial open interval.)

As already mentioned, the method produces a much more precise
description of the spectrum, which is unfortunately rather lengthy to
formulate in terms of a theorem, but the interested reader will be able to
extract that information from the proofs. This refined description will no
doubt be useful when studying the Hausdorff dimension of the spectrum as a
function of the sequence (q,-). From the point of view of applications, it is
important that our results apply also to small perturbations of Harper's
operator. In appendix e we show that under suitable assumptions, the
spectrum of a periodic magnetic Schrodinger operator is near the bottom a
Cantor set of measure 0.

In [HS2], the results of [HS1] where extended to the case when for some
N: |qj|^Cj\j(qp..,q^,Co) forj>:N+1, but still with the same incompleteness as
in [HS1]. We believe that the techniques of the present paper rather
automatically lead to a more complete Cantor structure result also in that
case. One could probably generalize the result even to the case when there is
a sequence l^j j<J2<J3<... of integers such that
lqjJ^Cj^-j^(qj^+i,...,qj^p, for suitable functions, CN.

The plan of the paper is the following:
Section 1 . Here we introduce and study certain auxiliary operators.
Section 2 contains a formal study of the iteration steps that we will
encounter, and we show that certain crucial symmetries are conserved.
Section 3. Here we treat the potential well problem for s-type 1 operators by
suitable modifications of the methods in [HS1].
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Section 4 treats the branching problem for strong type 1 operators and we
obtain a "renormalized" 2x2 system of h'-pseudodifferential operators.
Sections 5 and 6 contain some preliminary results for the renormalized
operator In section 4. It Is showed that after rescaling and depending on the
spectral region, the renormallzed operator is either of s-type 1 or 2. Theorem
6.2 gives the main iteration step for s-type 1 operators.
Section 7 treats the totally degenerate potential well case, which is the only
case genuinely non-scalar case for s-type 2 operators. Here we use some
ideas from [HS2L
Section 8 treats the non-degenerate potential well case for s-type 2
operators.
Section 9 is devoted to the branching case for s-type 2 operators. Theorem
9.2 gives the main iteration step for s-type 2 operators.

Various results are collected into 5 appendices:
Appendix a contains various general results in microlocal analysis. The
paragraph a.l recollects the approach of [Sll to analytic microlocal analysis via
FBI-transforms. We refer to that book for a more thorough treatment. In
paragraph a.2 we develop? a simple functional calculus for analytic
pseudodifferential operators. Paragraph a.3 may be of independent interest. It
gives a refined correspondence between unitary Fourier integral operators and
canonical transformations.
Appendix b. Here we give local normal forms for self-adjoint
pseudodifferential operators when the symbol has a saddle point or a
minimum. We only allow unitary conjugations and taking functions of the
operator. We believe that the results of this appendix will be useful in other
contexts.
Appendix c. Here we show that certain 2x2 systems of pseudodifferential
operators can be reduced to the case when the diagonal terms are scalars.
This is of use in section 7. See also [HS2].
Appendix d contains some justifications of the arguments in section 4.
Appendix e gives an application to magnetic Schrodinger operators. This is a
modification of the corresponding arguments in [HSIl. Since the symmetry
(0.8) was never assumed in [HS1], we have to add an extra symmetry to the
magnetic and electric fields and check that this leads to (0.8).

Some of the results of the present paper have been announced in [HS3]
We would finally like to thank A.Grigis for a large number of interesting

and stimulating dicussions with the authors during the preparation of this long
work.



1.Various operators with commutation relations.

In this section, we introduce various auxiliary operators, that will play
an important role later, and we study their commutation relations. Some of
this was already done in [HS1.2], but we think it is convenient to have a11 at
the same place. Let heR, h^O. All operators will act on L^R). The first
operators we study are natural h-quantizations of the translations:
(x,$)-^ (x,$)+2Tro(, o(€Z2 (and sometimes even in R2). Let x=X^ denote
the operator of translation by 2TT; i:u(x)=u(x-2Tr), let X* denote the
operator of multiplication by e2^^, and put
( 1 . 1 ) T^-C^T*0^, foro(€Z2 .

Sometimes, we shall also use that there is a natural extension of the
definition o fT^ to the case when «€R2, since there is an obvious definition
of real powers of X and t*. In a way, the crucial phenomenon that causes all
the interesting phenomena for Harper's operator, is that X and x* do not
commute in general. In fact, r^^expt-^Tr)2/^)'!:*0'!:- Let h'cR, be a
number such that,
(1.2) 2Tr/h=k+h72TT,
for some integer k. Then -i^l^expMh') X*9^, and more generally we get,
(1.3) TO(T^= e^z3l To^.
(1.4) T^= e^(o(.3)T^.
for o(,3eZ2, where cr denotes the standard symplectic form on R2, given by
o^x.^y.TD^y-xTl. (1-3) and (1.4) remain valid for o(,3€R2, provided that
we replace h' by (2Tr)2/h . The next operator we introduce is the unitary
Fourier transform y^=y, which can be viewed as an h-quantization of the
map K: R2—^2, given by,
(1.5) K(x,e)=(C»-x)-
Later on we shall also need the maps K^: R2 —»R2, defined as rotation by the
angle t, so that x=K-^/2. By definition,
(1.6) yu^^Trhr^Je-1^ u(x) dx, h>0.
and as already mentionned, y: L^R)-^ L^R) is unitary, y^y*, where
y* denotes the complex adjoint in the L^sense. It is easy to check,
(starting with the operators t and t*,) that,
(1.7) a^T^e-^I^Tx^oy.
for «€Z2, and the same relation with h' replaced by (2Tr)2/h, when o(€R2.

It will be useful in the following, to recall the relation between y and
the unitary group associated to the harmonic oscillator, R^th^^x2-^),
Dsf^d/dx). Let U^e1^^11. Since Uo=e''><2/f2h is in the kernel of R, we have
U^UQ=UO- on the other hand, we know (Leray [LD, that U.-^/^ and yare
metaplectic (unitary) operators with the same canonical transformation;
K-^/2, and hence that U-.^/2=ci)y, for some u) of modulus 1 . Since
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U--n72Uo=Uo and yuo=UQ, It follows that c0==1;
(1.8) U-.-n72=y=yh» ̂ ^
For later reference, it will also be convenient to know U^/4 explicitly. Using
that the phase ^(x^s-^/Z+CZ^^xy-y2/^ generates the correct
canonical transformation, namely K^/4, we first see that
0.9) U^^^^h-^Je^^y^iKy) dy,
for some constant C. In order to determine this constant, we again use that
U^/4Uo=UQ and that the corresponding integral in (1.8) can be evaluated
exactly, to obtain that, c=2~1/4Tr••1/2e iTr /8.

Let r denote the antilinear operator of complex conjugation; Fu= u . To
this operator we associate the transformation of phase-space;
(x,$) —> (x, -$). We notice that this transformation is anti-canonical, in the
sense that the Jacobian is equal to -1. As a general rule we shall associate
anti-canonical transformations to antilinear operators. The present
association is justified by the following fact. Let A=A(x,hD) be the h-Weyl
quantization of the symbol ACx.^eS^R^^acC^R2); for all j.kcN, there
exists Cj^ such that 19;l<9^a(x,$)| ̂ Cj^, for all (x,^)€R2}, defined by,
(1.10) Au(x)=(2Trh)-1JJe i(><-y)9/hA((x+y)/2.9)u(y)dyd9, h>0,
so that A is 0(1) as a bounded operator on L^(R) by standard theorems. (See
for instance [HS1] for a non standard proof.) When we want to distinguish more
clearly between the operator and its symbol, we shall sometimes write Op^tA)
or simply Op(A) for the operator. The justification of the association is then
given by,
( 1 . 1 1 ) rOp(A)=Op(B)r,
where B(x,$)=A(x,-$). Notice that r^id, so that ( 1 . 1 1 ) may take many
equivalent forms.

Thus in a way, r is a natural quantization of reflection in the x-axis.
We shall also need quantizations of other reflections, such as in some of the
lines lQ=(t(cos9,sin9); teR}. To define such reflections, it is natural to
rotate 19 by K-9 to the x-axis (IQ), then reflect in the x-axis, and finally
rotate back again. More precisely, the quantization of reflection ̂ 9 in IQ, is
defined by,
(i.iz) re= Ueru-e^
so that ro=r. This corresponds to ^Q^KQ^Q^-Q- From the definition of UQ,
it is easy to verify that,
(1 .13) rUe=U-er (.and classically, yo)<e=x:-eyo),
which gives rise to several obvious equivalent forms of (1 .12) . We get the
general relations,
(1 .14) FbUa=U^r^ , y^a^o^^ if2b-a=o(+23.
Now it is a general fact, that
(1 .15 ) U»eOp(a)UQ=Op(aoKe),


