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ON CONGRUENCES OF LINES IN THE PROJECTIVE SPACE

by Enrique Arrondo and Ignacio Sols

(Chapter 6 written in collaboration with M. Pedreira)

R£SUM£: Nous etudions les congruences lisses (c.a.d. les surfaces de la

Grassmannienne Gr(l,3) de droites de P3) en montrant leur parallelisme avec les surfaces

de P . Apres la description de toutes les congruences lisses de degre au plus neuf et

1'etude de son schema de Hilbert nous developpons une theorie generale. Par exemple,

nous definissons la notion de liaison adequate aux congruences et classifions les

congruences lisses qui sont projetees de Gr(l,4). Nous trouvons aussi des majorations du

genre sectionnel que nous utilisons pour obtenir des conditions (telles que d'avoir une

caracteristique d'Euler-Poincare donnee) qui ne sont verifiees que par les congruences
lisses cTun nombre fini de families.

SUMMARY: We study smooth congruences (i.e., surfaces in the Grassmannian Gr(l,3) of

lines in P ) showing their parallelism with surfaces in P . Besides the description of

all smooth congruences up to degree nine and studying their Hilbert scheme, we develop a

general theory. For example, we define the adequate notion of liaison for congruences

and classify the smooth congruences which are projected from Gr(l,4). We also prove some

bounds of the sectional genus in order to give conditions (e.g. having a fixed

Euler-Poincare characteristic) such that there are finitely many families of smooth

congruences verifying those conditions.
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INTRODUCTION

The present paper contains with almost no change the thesis of the first author,
written under the advice of the second author.

The study of congruences of lines, i.e., surfaces in the Grassmann variety
G=Gr(l,3) of lines in IP , goes back to the middle of last century. From that time, most
of the classical algebraic geometers, such as Kummer, Reye, Schumacher, Bordiga, Corrado
Segre, Castelnuovo, Fano, Jesspp, Semple or Roth, have published papers devoted to this
topic, classifying, under certain conditions, congruences of fixed degree or fixed order
(see §0 for definitions) or just studying a particular congruence.

However, coinciding with the end of the classical algebraic geometry school, this
flurry of research on congruences stopped suddenly. Only in the decade of the 80's, and
parallel to the development of the theory of surfaces in P4, a new interest for
congruences started again. To our knowledge, the first paper of this second period
(although published later than some other ones) is that of Ziv Ran ([371) where, solving
a conjecture proposed by Sols. he generalizes a classical result of Kummer and
classifies all irreducible surfaces of order one in any Grassmannian. After this, many
authors have published several papers on congruences: Cossec, Goldstein, Gross,
Hernandez, Papantonopoulou, Verra, etc.

The reason why this resurgence of the theory of congruences coincides in time with
the development of the theory of surfaces in P4 is that both G and P4 have the same
dimension four (one less than the dimension of a natural ambient space for a smooth
surface), so that the same kind of results are expected. In fact, any statement for
surfaces in P has its analogous for congruences. The converse, however, is not true,
since the geometry of congruences is much richer in problems. For example a congruence
has a bidegree, instead of the degree of projective surfaces, and points of the
congruence have an interpretation as lines in P3.
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The aim of this work is to prove some general statements on smooth congruences

(mainly in §3, §5 and §6), most of them analogues of theorems for smooth surfaces in P .

This does not mean that proofs are just a mere imitation of those for P . For example,

Theorem 5.1, which is analogous to the Severi theorem in P , is proved by looking at the

geometry of lines in P3, so that not even a single idea of the proof of Severi is used.

We also give in §4 a classification and description of the Hilbert scheme of smooth

congruences of degree at most nine. At the end of §2 and §4, we add an appendix with

partial results and conjectures, in order to show the numerous possibilities for future

research with congruences.

The distribution of this work is as follows:

-In §0 we just give some preliminary definitions, as well as some general result

that we will use frequently.

-We devote §1 to give general properties of vector bundles on G and we introduce

the most important ones, that will be used later, especially in §4 to give resolutions

of the ideal sheaves of congruences. We also give a new and shorter proof of the fact

that the only indecomposable vector bundles on G not having intermediate cohomology are

the line bundles and the twists of the universal bundles. This result, proved in

algebraic terms by Knorrer (see 129]) with great generality, was independently proved

for G by the second author by purely geometric means, but not published until he

obtained a proof for all smooth quadrics (see [2]).

-In §2, after proving some known general results on congruences and several

technical results that we will use to study the Hilbert scheme of congruences, we add an

appendix where we prove some partial results related to a conjecture of Dolgachev on the

semistability of the restriction to smooth congruences of the universal vector bundles.

-Section §3 consists of the development of a new theory of linkage for congruences.

It is not exactly analogous to the known theory for projective varieties, since in our

theory the role of complete intersections is played not only by them, but also by what

we call spinor congruences (that are zero locus of sections of twists of the universal

quotient bundle E^}. We show that our definition is the right one by proving analogous

results to those for linkage in projective spaces. We prove, for example, that even

liaison classes are in 1-1 correspondence with classes of vector bundles on G not having

first cohomology spaces after tensoring with any line bundle and twists of £^ (where two

bundles are in the same class when they differ by a twist after removing their
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components of the form OM) or E (m) ). As an easy corollary of this theory, we get

resolutions for the ideal sheaves of smooth congruences lying in a linear complex.

-In §4 we give a classification of smooth congruences of degree at most nine,

giving a resolution of their ideal sheaves in G (thus providing a complete information

on their cohomology, in particular we know the postulation of the congruences) and using

it to describe their Hilbert scheme.

Section §4.1 corresponds to congruences of degree less than or equal to eight,

whose classification is essentially due to Fano (see (111 ) under different conditions.

Also Papantonopoulou gives in (341 (with a slight mistake) a list of possible smooth

congruences of degree at most eight (some members of her list actually do not exist).

Our new contribution, besides giving the precise list of smooth congruences, is the

description of their Hilbert scheme. These results appeared in (ll. New information on

the restriction of the universal vector bundles to some of these congruences also

appears in this section.

In section §4.2, devoted -to smooth congruences of degree nine, something similar

happens, since their classification was obtained by Verra (with a numerical mistake in

the computation of the invariants of the one lying in a linear complex). We add as an

appendix two more sections. In section §4.3 we selected several examples of more

congruences (some of them in a quite incomplete way) and in section §4.4 we state some

known results on congruences that we will need later or just that are interesting to get

a global view of congruences).

-Section §5 contains a proof of what is the analogous for congruences of the Severi

theorem in P . More precisely, we prove that, excepting an explicit list of five types

of congruences, no other smooth congruence can be obtained as a projection of a surface

in Gr(l,4), the Grassmann variety of lines in P . We complete this section using this

result to classify those smooth congruences such that the restriction to them of the

universal quotient bundle decomposes as a direct sum of two line bundles.

-Finally, section §6 solves a conjecture of Robin Hartshorne made for both P and

G, stating that only a finite number of families of smooth surfaces in these spaces

correspond to rational surfaces. This problem was solved by Ellingsrud and Peskine for

P4 (see (10]), proving a stronger result which has as an easy corollary that all but a

finite number of families of smooth surfaces in P are of general type. Their result can

be stated in several different ways, as Christian Peskine pointed out to us. In

particular, we prove that there exists only a finite number of families of smooth
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congruences S having a fixed Euler-Poincare characteristic ^(0-).

Our proof is essentially a translation of theirs to G. The new and original part is

mostly in section §6.1, where we obtain bounds for the genus of curves in Q (hence for

the sectional genus of congruences) depending on their postulation. Such a bound for

curves in P was obtained by Gruson and Peskine by restricting to general plane sections

and defining for it a series of ordered numbers which are each proved to differ by at

most one with its neighbors. The solution for Q is not so easy, and the trick that one

has to use is to restrict not to smooth quadrics, but to quadratic cones, and define a

series of ordered numbers that each differ by at most two with its neighbors. We also

want to mention that the calculations in section §6.2 were made in collaboration with

Manuel Pedreira.

We want to thank Christian Peskine for his continuous encouragement and help in the

preparation of this work. We also shared useful conversations with G. Ellingsrud, K.

Ranestad, A. Aure and A. Verra. We thank also M. Gross, who had us always informed on

his progress in the topic, and also has helped a lot in correcting the grammar of the

paper. Both authors have been supported by CAICYT grant PB86-0036 during the preparation

of this work.



§0. PRELIMINARIES

We will denote with G the Grassmann variety Gr(l,3) of lines in the projective
space P^PdQ over C. Via the Plucker embedding, we can also view G as a smooth quadric
in P5= P(A2^). The Chow ring of G is very well-known, and we have

-A^G) = ZT) where T} is the class of the hyperplane section of G in P . If the
hyperplane is tangent at a point I of G, then its intersection with G is a cone with
vertex I that corresponds to the Schubert cycle of lines of P that meet the line L
represented by the point 1. This is called a special linear complex. A hypersurface of G
having class d-n in Al{G) is called a complex of degree d.

-A2{G} = IT] © IT] where T) is the Schubert cycle of lines of P3 passing
through a fixed point (also called an a-plane, since it is a plane inside P ) and T)
is the Schubert cycle of lines of P3 contained in a fixed plane (also called a p-plane).
Each plane of G is either an a-plane or a 3-plane.

-^(G) = If] where T] is the Schubert cycle of lines of P3 contained in a fixed
3 3 5

plane and passing through a fixed point of the plane. This represents a line in P and,
conversely, all lines of G admit such a geometric interpretation in P .

-A^(G) = IT] where T) is, of course, the class of a point of G.

The multiplicative structure is given by

Vs V \2

\\r ^3
V2.2- ^3

W ^
T)2 = 7)

2.1 4
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A cycle in A (G) can, therefore, be denoted by an integer number, except for the

case i=2, where we will use pairs of integers (a ,a ) to denote the class a T) +a 17

An element in the Chow ring of G will be written in polynomial form as

W^z^^f^
With this convention, since G is a quadric in P we can write its canonical line

bundle as u-OJ-4).
G G

Notations. Throughout this work, we will use the following conventions:

An element of G will be denoted with a small latin letter (e.g. I) and the line in
P it represents will be denoted by the corresponding capital letter (L in our example).

For any subvariety X of G, ^-y will denote the ideal sheaf of X in G.

If S be a smooth surface in G, we use the following notations for its invariants:

oThe order d of S is defined to be the number of lines of the congruence passing

through a fixed general point of P3.

oThe class d will be the number of lines of the congruence contained in a fixed

general plane.

oWe will denote with d the total degree d=d +d -H of S, that is its degree as a

surface in P5 [H denotes the hyperplane class of S, i.e. tlie class of its intersection

with a general linear complex).

oThe Euler-Poincare characteristic of 0- will be denoted by ^=l-q+p =l+p , where
i 2 8 a

q=h (0-) is the irregularity of S, p =h (0-) is the geometric genus and p is the
S g ^ a

arithmetic genus.

oWe use the symbol K to represent the canonical class of S

oWe denote by n the sectional genus of S, i.e., the genus of the intersection of S

with a general linear complex. By the adjunction formula, 27i-2=H +KH.

3 S 3V 3There is an isomorphism GO,P )——>GrO,P ) mapping each line in P intothe pencil

of planes containing the line. Hence, any congruence in G(1,P3) of bidegree (d ,d )
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produces a congruence in G(1,P ) of bidegree (d ,d ) with the same invariants. We will

refer to this fact as duality.

Finally, we state here some general results that we will use several times

throughout this work (in §4.4 we give a similar list of results concerning congruences,

once the necessary ingredients are introduced).

[46] Proposition 1.1 (2). Let X, Y, Z, S be smooth schemes appearing in a diagram

W———>Y

4 , [8x—J—^

1
where W = Xx—Y and f is a smooth map. Then, there is a dense open set U in S such that

for each s in U the fiber W of noh (that is X x Y) is either empty or smooth. (The

ground field here must have characteristic zero).

[23] Proposition 9.5. A vector bundle F on P^" is a direct sum of line bundles if

and only if ^(Fd))^ for all integers I and 0<i<r.

[31] Theorem 2. Let V a complete normal variety of dimension at least two (over an

algebraically closed field of characteristic zero) Let JS be an invertible sheaf on V

such that, for large n, £. is spanned by its sections. Let these sections define the

morphism V———y>W. Then, H^^) = 0 for all m^l if and only if dim(W)>l.

The easy corollary we will apply is the following: Let X be the normalization of a

projective surface X (in our case X will be a surface in a smooth quadric of P ). If we

denote with 0^(1) to the pull-back to X of 0 (1 ) , then H\0.,(-m)) = 0 for all m>.l. (Just

apply the above result making £ = ^y(l) and n=l).

We will also use a slight generalization of Mumford- Castelnuovo criterion (see

Prop. 1.1).


