## Mémoires de la S. M. F.

#### HARUZO HIDA

On the search of genuine p-adic modular L-functions for GL(n). With a correction to : on p-adic L-functions of  $GL(2) \times GL(2)$  over totally real fields

Mémoires de la S. M. F. 2<sup>e</sup> série, tome 67 (1996)

<a href="http://www.numdam.org/item?id=MSMF">http://www.numdam.org/item?id=MSMF</a> 1996 2 67 R1 0>

© Mémoires de la S. M. F., 1996, tous droits réservés.

L'accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.



Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Mémoire de la Société Mathématique de France Numéro 67, 1996

# On the Search of Genuine p-adic Modular L-Functions for GL(n)

#### Haruzo Hida\*

**Abstract** — The purpose of this monograph is to state several conjectures concerning the existence and the meromorphy of many variable p-adic L-functions attached to many variable Galois representations (for example having values in  $GL_n(\mathbb{Z}_p[[X_1,\ldots,X_r]])$ ) and to present some supporting examples for the conjectures. Our discussion in the earlier sections is therefore quite speculative, but towards the end, we gradually make things more concrete.

**Résumé** — Le but de cette monographie est de formuler quelques conjectures concernant l'existence et la méromorphie des fonctions L p-adiques de plusieurs variables attachées à des représentations galoisiennes de plusieurs variables (par exemple, à valeurs dans  $GL_n(\mathbb{Z}_p[[X_1,\ldots,X_r]]))$  et de présenter quelques exemples motivant nos conjectures. Nous commençons par une discussion assez spéculative, mais vers la fin, nous donnons des résultat plus concrets.

**AMS Subject Classification Index:** 11F13, 11F41, 11F67, 11F70, 11F85.

<sup>\*</sup>Department of Mathematics, University of California, Los Angeles CA 90024-1555, U.S.A., e-mail: hida@math.ucla.edu

|               |  | , |  |
|---------------|--|---|--|
| e de la marco |  |   |  |
|               |  |   |  |
|               |  |   |  |

### **Contents**

| 1 | Intr                  | oduction                                                      | 1  |  |  |
|---|-----------------------|---------------------------------------------------------------|----|--|--|
| 2 | p-Adic Hecke algebras |                                                               |    |  |  |
|   | 2.1                   | The weight group                                              | 11 |  |  |
|   | 2.2                   | Automorphic forms of weight $\kappa$                          | 12 |  |  |
|   | 2.3                   | Fourier-expansion and rationality                             | 14 |  |  |
|   | 2.4                   | q-Expansion, integrality and Hecke operators                  | 14 |  |  |
|   | 2.5                   | p-adic Hecke algebras                                         | 16 |  |  |
|   | 2.6                   | Duality between Hecke algebras and $p$ -adic modular forms    | 17 |  |  |
|   | 2.7                   | Modular parametrization by $\mathscr X$                       | 18 |  |  |
|   | 2.8                   | Galois representations attached to $\lambda$                  | 19 |  |  |
|   | 2.9                   | Congruence modules and differential modules                   | 21 |  |  |
|   | 2.10                  | Non-abelian class number formulas                             | 22 |  |  |
| 3 | Per                   | iods of motives                                               | 29 |  |  |
|   | 3.1                   | Periods of motives                                            | 29 |  |  |
|   | 3.2                   | <i>p</i> -Adic periods of motives                             | 32 |  |  |
|   | 3.3                   | An example of vanishing $p$ -adic periods                     | 34 |  |  |
|   | 3.4                   | Non-vanishing of $p$ -adic periods                            | 35 |  |  |
|   | 3.5                   | Admissibility condition                                       | 38 |  |  |
| 4 | Per                   | iods of arithmetic Galois representations                     | 41 |  |  |
|   | 4.1                   | Variation of $p$ -adic periods over $Spec(\mathbb{I})$        | 41 |  |  |
|   | 4.2                   | Genuine p-adic L-functions                                    | 43 |  |  |
|   | 4.3                   | Normalized $p$ -adic $L$ -functions                           | 44 |  |  |
|   | 4.4                   | Singularity                                                   | 49 |  |  |
|   | 4.5                   | $\mu$ -invariant of cyclotomic restrictions of $L_S(\varphi)$ | 50 |  |  |

|   | 4.6                                         | Nearly ordinary \( \bracksquare \) adic representations \( \therefore \) \ | 51  |  |  |  |  |  |
|---|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
|   | 4.7                                         | Residually reducible case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53  |  |  |  |  |  |
| 5 | Peri                                        | Periods of tensor products of motives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |  |  |  |  |  |
|   | 5.1                                         | Tensor products of motives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55  |  |  |  |  |  |
|   | 5.2                                         | Periods of $M_1 \otimes M_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56  |  |  |  |  |  |
|   | 5.3                                         | Periods of $M_1 \otimes \cdots \otimes M_r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58  |  |  |  |  |  |
|   | 5.4                                         | Conjectures on $\varphi_1 \otimes \cdots \otimes \varphi_r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59  |  |  |  |  |  |
|   | 5.5                                         | The case of $\varphi_1 \otimes \varphi_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60  |  |  |  |  |  |
|   | 5.6                                         | The case of $Ad(\varphi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 62  |  |  |  |  |  |
|   | 5.7                                         | The case of $\varphi_1 \otimes \varphi_2 \otimes \varphi_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62  |  |  |  |  |  |
| 6 | <b>p-A</b>                                  | dic Rankin products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65  |  |  |  |  |  |
|   | 6.1                                         | Complex Rankin products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65  |  |  |  |  |  |
|   | 6.2                                         | The $p$ -adic Rankin product in [41]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66  |  |  |  |  |  |
|   | 6.3                                         | Ordinary versus nearly ordinary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67  |  |  |  |  |  |
|   | 6.4                                         | Auxiliary L-functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70  |  |  |  |  |  |
|   | 6.5                                         | Ordinary $p$ -adic Rankin products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72  |  |  |  |  |  |
|   | 6.6                                         | Deduction of Theorem 6.5.2 from Theorem 6.5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75  |  |  |  |  |  |
|   | 6.7                                         | <i>p</i> -Ordinary adelic Eisenstein measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 79  |  |  |  |  |  |
|   | 6.8                                         | Convoluted measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80  |  |  |  |  |  |
|   | 6.9                                         | Convolution along $\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82  |  |  |  |  |  |
|   | 6.10                                        | Proof of Theorem 6.5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84  |  |  |  |  |  |
| 7 | p-Adic Rankin products in partially CM case |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |  |  |  |
|   | 7.1                                         | CM components of Hecke algebras                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85  |  |  |  |  |  |
|   | 7.2                                         | Periods of $M(\lambda_P)$ of CM type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86  |  |  |  |  |  |
|   | 7.3                                         | Genuine p-adic Rankin products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90  |  |  |  |  |  |
|   | 7.4                                         | Totally CM Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90  |  |  |  |  |  |
| 8 | p-Ordinary Katz p-adic L-functions 9        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |  |  |  |
|   | 8.1                                         | <i>p</i> -Ordinary Eisenstein measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93  |  |  |  |  |  |
|   | 8.2                                         | The $p$ -ordinary Katz $p$ -adic $L$ -functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94  |  |  |  |  |  |
|   | 8.3                                         | $p	ext{-Ordinary }L	ext{-function }L_p(\Phi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96  |  |  |  |  |  |
|   | 8.4                                         | Another proof of Theorem 8.3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 97  |  |  |  |  |  |
|   | 8.5                                         | Representations isogenous to $\Phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99  |  |  |  |  |  |
|   | Bib                                         | liography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 101 |  |  |  |  |  |

| A            | Correction to [41] | 107 |
|--------------|--------------------|-----|
| $\mathbf{B}$ | List of Symbols    | 109 |

#### 1. Introduction

The purpose of this monograph is to state several conjectures concerning the existence, a precise interpolation property and the meromorphy of many variable p-adic L-functions attached to many variable (irreducible) Galois representations (for example having values in  $GL_n(\mathbb{Z}_p[[X_1,\ldots,X_r]])$ ) and to present some supporting examples for the conjectures. Often in the non-abelian case, p-adic L-function is determined up to unit multiples. We would like to identify a precise interpolation property necessary to determine the p-adic L uniquely. This is important to have a non-abelian generalization of classical class number formulas and limit formulas which gives a direct connection between the analytic p-adic L and arithmetic objects. The theory of abelian p-adic L-functions is constructed out of a desire to better understand the class number formulas. Contrary to this, in the non-abelian case, it is ironic for us to be left in search of a p-adic L-function genuinely characterized by the Galois representation by which the generalized class number formula should be written down. Our discussion in the earlier sections is therefore quite speculative, but towards the end, we gradually make things more concrete.

Let us describe our idea. Let p be a prime, and fix algebraic closures  $\overline{\mathbb{Q}}$  of  $\mathbb{Q}$  and  $\overline{\mathbb{Q}}_p$  of  $\mathbb{Q}_p$ . Let F be a finite extension of  $\mathbb{Q}$ . We write I for the set of all embeddings of F into  $\overline{\mathbb{Q}}$ . We will later fix an embedding  $i_p:\overline{\mathbb{Q}}\to\overline{\mathbb{Q}}_p$  and take a field K which is a finite extension of  $\mathbb{Q}_p$  in  $\overline{\mathbb{Q}}_p$  containing the image under  $i_p\sigma$  for every  $\sigma\in I$ . Write  $\mathbb{C}$  for the p-adic integer ring of K. We extend  $\sigma$  to an isomorphism:  $\overline{F}\cong\overline{\mathbb{Q}}$  which we denote again by  $\sigma$ . For each p-adic place  $\mathfrak{P}$  of F, we write  $\mathcal{G}_{F_{\mathfrak{P}}}$  for the Galois group  $\mathrm{Gal}(\overline{F}_{\mathfrak{P}}/F_{\mathfrak{P}})$ , and if  $\mathfrak{P}$  is induced from  $i_p\sigma$ , we identify it with the decomposition group at  $\mathfrak{P}$  in  $\mathcal{G}_F = \mathrm{Gal}(\overline{F}/F)$  via  $i_p\sigma$ . Let  $T_n$  be the standard diagonal torus of  $\mathrm{Res}_{\mathbf{r}/\mathbb{Z}} GL(n)$  for the integer ring  $\mathbf{r}$  of F which is split over  $\mathbb{C}$ . Then we consider a normal integral domain  $\mathbb{F}$  finite (but not necessarily flat) over the completed group algebra  $\mathbb{C}[[T_n(\mathbb{Z}_p)]]$ . We assume that  $\mathbb{C}$  is integrally closed in  $\mathbb{C}$ . Each  $\mathbb{C}$ -algebra homomorphism  $P:\mathbb{C}\to K$  restricted to  $\mathbb{C}[[T_n(\mathbb{Z}_p)]]$  induces a continuous character  $\kappa(P)$  of  $T_n(\mathbb{Z}_p)\to K^\times$ . We call  $P\in Spec(\mathbb{D})(K)$  arithmetic if it induces a weight (that is, an algebraic character) of the torus  $T_n$ 

on an open neighborhood of the identity in  $T_n(\mathbb{Z}_p)$ . We want to study a continuous Galois representation  $\varphi: \mathcal{G}_F \to GL_n(\mathbb{I})$  acting on  $V(\cong \mathbb{I}^n)$  satisfying the following condition:

(A1) There are arithmetic points P densely populated in  $Spec(\mathbb{I})(K)$  such that the Galois representation  $\varphi_P = P \circ \varphi$  is the p-adic étale realization of a rank n pure motive  $M_P$  defined over F with coefficients in a number field  $E_P$  in  $\overline{\mathbb{Q}}$ .

The number field  $E_P$  depends on P, and the composite  $E_\infty$  of all  $E_P$  for P satisfying (A1) is usually an infinite extension of  $\mathbb{Q}$ . We call points P satisfying (A1) motivic. Densely populated motivic points determine an isomorphism  $i_p: E_\infty \hookrightarrow \overline{\mathbb{Q}}_p$  such that  $Tr(\varphi_P(Frob_{\mathfrak{l}}))$  for primes  $\mathfrak{l}$  unramified for  $\varphi_P$  generates a subfield of  $i_p(E_P)$ . We extend  $i_p$  to  $\overline{\mathbb{Q}}$ . To get reasonable p-adic L-functions, we need to assume further

- $(A2_{\pm})$  For a dense subset of motivic points P, we have
  - (i) The Tate twist  $M_P(1)$  is critical in the sense of Deligne [15], and for each p-adic place  $\mathfrak{P}$  of F, the restriction of  $\varphi_P$  to  $\mathscr{G}_{F_{\mathfrak{P}}}$  is of Hodge-Tate type;
  - (ii) Writing  $\mathscr{F}_{P}^{\mp}$  for the middle terms of the Hodge filtration of  $H_{DR}(M_P)$  as in [15], for each p-adic place  $\mathfrak{P} = i_p \sigma$  of F, there exists an  $\mathbb{I}$ -direct summand  $V_{\mathfrak{P}}^{\pm} \subset V$  (independent of P) stable under  $\mathscr{G}_{F_{\mathfrak{P}}}$  such that the comparison isomorphism of Faltings [21] induces:  $V_{\mathfrak{P}}^{\mp} \otimes_{\mathbb{I},P} B_{HT} \cong \mathscr{F}_{P}^{\mp} \otimes_{F \otimes E, i_p \sigma \otimes i_p} B_{HT}$ ,

where  $B_{HT}$  is one of the Fontaine's rings [22] given as follows: Writing  $\Omega$  for the p-adic completion of  $\overline{\mathbb{Q}}_p$ , we have  $B_{HT} \cong \Omega[t, t^{-1}]$  on which  $\mathscr{G}_{\mathbb{Q}_p}$  acts via the natural action on  $\Omega$  and via the cyclotomic character on the indeterminate t. Since  $V(\varphi_P)$  is of Hodge-Tate type, as a  $\mathscr{G}_{F_{\mathbb{R}}}$ -module, writing  $E_{P,\mathfrak{p}}$  for the topological closure of  $i_p(E_P)$  in  $\Omega$ ,  $V(\varphi_P) \otimes_{E_{P,\mathfrak{p}}} \Omega \cong \bigoplus_{1 \leq i \leq n} \Omega(m_i)$  for integers  $m_i$  depending on  $i_p\sigma$ , where  $\Omega(m) = \Omega t^m$  as a graded component of  $B_{HT}$ . We call  $(m_1, \ldots, m_n)$  the Hodge-Tate twist of  $V(\varphi_P)$  at  $\sigma$ . We will show that the condition (ii) is equivalent to the admissibility condition of Panchishkin ([56] Section 5) for  $M_P$  if  $M_P$  is crystalline at p. A similar condition is stated and studied in [28] p.217 in terms of Selmer groups. In particular, the existence of  $V_{\mathfrak{P}}^+$  in (A2\_-) plays an important role in defining the Selmer group. We require by (ii) an analytic coherence of  $\mathscr{F}_P^\pm$  with respect to analytically varying P. The density assumption included in (A2\_ $\pm$ ) about motivic critical points is important to guarantee the uniqueness of the p-adic L-function. We also assume

(unr)  $\varphi$  is unramified at almost all places of F.

The (conjectural)  $\mathbb{I}$ -adic representations arising from cohomological modular forms on  $GL(n)_{/F}$  further satisfies an additional condition besides (A1-2 $_{\pm}$ ). Since  $T_n \cong \mathbf{G}_m^n$  over  $F, X(T_n)$  is isomorphic to the product of n copies of the free module  $\mathbb{Z}[I]$ 

generated by the set I of all embeddings of F into  $\overline{\mathbb{Q}}$ . Thus we can associate to each arithmetic point P, an n-tuple  $(m_1(P), \ldots, m_n(P))$  of elements in  $\mathbb{Z}[I]$ . Then the condition is

(A3) The Hodge-Tate twist of  $\varphi_P$  restricted to  $\mathscr{G}_{F_{\mathfrak{P}}}$  for the p-adic place  $\mathfrak{P}$  induced by  $i_p\sigma$  is given by  $(m_1(P)_{c\sigma}, m_2(P)_{c\sigma}, \dots, m_n(P)_{c\sigma})$  for each  $\sigma \in I$ ,

where for  $m \in \mathbb{Z}[I]$ , we have written  $m = \sum_{\sigma} m_{\sigma} \sigma$ , and c stands for the complex conjugation which we specify below choosing an embedding  $i_{\infty}$  of  $\overline{\mathbb{Q}}$  into  $\mathbb{C}$ . This last condition (A3) might be always satisfied by representations satisfying (A1-2 $_{\pm}$ ) after modifying the algebra structure over  $\mathbb{C}[[T_n(\mathbb{Z}_p)]]$  and is equivalent to

(A3') The Hodge types of  $H_B(i^{\infty\sigma}M_P)\otimes_{E,i_{\infty}}\mathbb{C}$  is given by  $\{(m_i(P)_{\sigma},m_{n+1-i}(P)_{c\sigma})\}_i$ , where  $H_B(i^{\infty\sigma}M_P)$  is the Betti realization of  $M_P$  at  $i_{\infty}\sigma$ . Anyway, we call the representation satisfying (A1-3) and (unr) an arithmetic Galois representation.

As conjectured by Deligne [15], for each motivic point P as in  $(A2_{-})$ , we expect to have a well defined special value

$$\frac{L(1, M_P)}{\mathbf{c}^+(M_P(1))} \in E_P \subset E_P \otimes_{\mathbb{Q}} \mathbb{C}$$

for Deligne's period  $\mathbf{c}^+(M_P(1))$  in  $(E \otimes_{\mathbb{Q}} \mathbb{C})^{\times}$ . We now choose an embedding  $i_{\infty} : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$  and write  $\frac{L_{i_{\infty}}(1,M_P)}{c_{\infty,i_{\infty}}^+(M_P(1))}$  for the  $i_{\infty}$ -component of  $\frac{L(1,M_P)}{\mathbf{c}^+(M_P(1))}$ . An element L of the quotient field  $\mathbb{K}$  of  $\mathbb{Q}_{\mathbb{Q}} \cap \mathbb{Q}_{\mathbb{Q}}$  can be regarded as a (p-adic) meromorphic function on  $Spec(\mathbb{I})(\Omega)$  assigning the value L(P) = P(L) to  $P \in Spec(\mathbb{I})$ , where  $\mathbb{Q}_{\Omega}$  is the p-adic integer ring of  $\Omega$ . We call such functions "meromorphic", because it is a ratio of elements in  $\mathbb{Q}_{\mathbb{Q}} \cap \mathbb{Q}_{\Omega}$  and hence a ratio of p-adic analytic functions on a nonempty Zariski open subset of  $Spec(\mathbb{I})$  (or more precisely, on the formal completion of a non-empty open subscheme of  $Spec(\mathbb{I})$  along its fibre over p). Since  $\mathbb{I}$  is a normal integral domain, if a meromorphic function in the above sense is everywhere defined, it is actually an element in  $\mathbb{Q}_{\mathbb{Q}} \cap \mathbb{Q}_{\Omega}$  (and hence is an Iwasawa function when  $\mathbb{I}$  is an irreducible component of  $\mathbb{Q}[T(\mathbb{Z}_p)]$  for a quotient torus T of  $T_n$ ). We expect that this is the case when  $\varphi$  modulo the maximal ideal of  $\mathbb{I}$  is absolutely irreducible. We fix a choice of  $S = \{V_{\mathbb{R}}^+\}_{\mathbb{R}}$ . If there exists an element  $L_{S,i_{\infty}}(\varphi) \in \mathbb{K}$  satisfying the following condition for all motivic points P as in (A1-2\_):

(Int) 
$$i_p^{-1} \left( \frac{L_{S,i_{\infty}}(P,\varphi)}{c_{p,i_{\infty}}^+(M_P(1))} \right) = *i_{\infty}^{-1} \left( \frac{L_{i_{\infty}}(1,M_P)}{c_{\infty,i_{\infty}}^+(M_P(1))} \right)$$

for a constant "\*", we call  $L_{S,i_{\infty}}(\varphi)$  a genuine p-adic L-function of  $\varphi$  of type S. The exact form of the constant "\*" is known by Coates, Perrin-Riou and Panchishkin, when  $M_P$  is crystalline at p and  $\varphi$  contains all cyclotomic deformation of  $M_P$  (see, [60], [56] Section 6, and Conjecture 4.2.1 in Chapter 4 in the text). Here  $c_{p,i_{\infty}}^+(M_P(1))$