Mémoires de la S. M. F.

ÉRIC LEICHTNAM Paolo Piazza

The *b*-pseudodifferential calculus on Galois coverings and a higher Atiyah-Patodi-Singer index theorem

Mémoires de la S. M. F. 2^e série, tome 68 (1997)

<http://www.numdam.org/item?id=MSMF_1997_2_68__1_0>

© Mémoires de la S. M. F., 1997, tous droits réservés.

L'accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

The *b*-pseudodifferential calculus on Galois coverings and a higher Atiyah-Patodi-Singer index theorem

Eric Leichtnam^{\dagger} and Paolo Piazza^{\ddagger}

Abstract. Let $\Gamma \to \widetilde{M} \to M$ be a Galois covering with boundary. In this paper we develop a *b*-pseudodifferential calculus on the noncompact manifold \widetilde{M} . Our main application is the proof of a higher Atiyah-Patodi-Singer index formula, for a generalized Dirac operator \widetilde{D} on \widetilde{M} , under the assumption that the group Γ is of polynomial growth with respect to a word metric and that the L^2 -spectrum of the boundary operator \widetilde{D}_0 has a gap at zero. Our results extend work of Atiyah-Patodi-Singer, Connes-Moscovici and Lott.

Résumé. Soit $\Gamma \to \widetilde{M} \to M$ un revêtement Galoisien à bord. Dans cet article nous développons un *b*-calcul pseudodifférentiel sur \widetilde{M} . Ceci nous permet de prouver un théorème de l'indice supérieur d'Atiyah-Patodi-Singer, pour un opérateur de Dirac \widetilde{D} sur \widetilde{M} , sous l'hypothèse que le groupe Γ est à croissance polynomiale par rapport à une métrique des mots et que zéro est un point isolé du spectre L^2 de l'opérateur de bord \widetilde{D}_0 . Notre résultat généralise des travaux d'Atiyah-Patodi-Singer, Connes-Moscovici et Lott.

Key words: Dirac operators, Galois coverings, C^* -algebras, b-calculus, noncommutative de Rham homology, finite propagation speed estimates.

AMS Subject Classification Index: 58G12, 58G20, 46L87, 58G15.

[†] École Normale Supérieure, DMI, 45 rue d'Ulm, F-75230 Paris Cedex 05, France, Eric.Leichtnam@ens.fr

[‡] Università di Roma "La Sapienza", Istituto "G. Castelnuovo", P.le A. Moro 2, I-00185 Roma, Italy, piazza@mat.uniroma1.it

CONTENTS

 I. Higher index theory on closed manifolds. 1. B[∞]-Mishenko-Fomenko pseudodifferential calculus. 2. Higher eta invariants. 3. Modified higher eta invariants. 4. Γ-manifolds with boundary and the small b-calculus. 5. Γ-trace class operators. 6. The b-Γ-trace. 7. Γ-invariant b-elliptic operators and their parametrices. 8. The Γ-index of an elliptic Γ-invariant b-differential operator. 9. Virtually nilpotent groups and spectral properties. 10. The heat equation on Galois coverings with boundary. 11. Higher Atiyah-Patodi-Singer index theory. 11. The Λ-b-Mishenko-Fomenko calculus. 	11 21 37 41 49
 Higher eta invariants. Modified higher eta invariants. Modified higher eta invariants. II. Galois coverings and the b-calculus. I-manifolds with boundary and the small b-calculus. I-trace class operators. The b-Γ-trace. The b-Γ-trace. The Γ-index of an elliptic I-invariant b-differential operator. Virtually nilpotent groups and spectral properties. The heat equation on Galois coverings with boundary. III. Higher Atiyah-Patodi-Singer index theory. The Λ-b-Mishenko-Fomenko calculus. 	21 37 41
 Modified higher eta invariants. II. Galois coverings and the b-calculus. 4. Γ-manifolds with boundary and the small b-calculus. 5. Γ-trace class operators. 6. The b-Γ-trace. 7. Γ-invariant b-elliptic operators and their parametrices. 8. The Γ-index of an elliptic Γ-invariant b-differential operator. 9. Virtually nilpotent groups and spectral properties. 10 The heat equation on Galois coverings with boundary. III. Higher Atiyah-Patodi-Singer index theory. 11. The Λ-b-Mishenko-Fomenko calculus. 	37 41
 II. Galois coverings and the b-calculus. 4. Γ-manifolds with boundary and the small b-calculus. 5. Γ-trace class operators. 6. The b-Γ-trace. 7. Γ-invariant b-elliptic operators and their parametrices. 8. The Γ-index of an elliptic Γ-invariant b-differential operator. 9. Virtually nilpotent groups and spectral properties. 10 The heat equation on Galois coverings with boundary. III. Higher Atiyah-Patodi-Singer index theory. 11. The Λ-b-Mishenko-Fomenko calculus. 	41
 4. Γ-manifolds with boundary and the small b-calculus 5. Γ-trace class operators 6. The b-Γ-trace 7. Γ-invariant b-elliptic operators and their parametrices 8. The Γ-index of an elliptic Γ-invariant b-differential operator 9. Virtually nilpotent groups and spectral properties 10 The heat equation on Galois coverings with boundary III. Higher Atiyah-Patodi-Singer index theory. 11. The Λ-b-Mishenko-Fomenko calculus 	
 5. Γ-trace class operators. 6. The b-Γ-trace. 7. Γ-invariant b-elliptic operators and their parametrices. 8. The Γ-index of an elliptic Γ-invariant b-differential operator. 9. Virtually nilpotent groups and spectral properties. 10 The heat equation on Galois coverings with boundary. III. Higher Atiyah-Patodi-Singer index theory. 11. The Λ-b-Mishenko-Fomenko calculus. 	
 6. The b-Γ-trace. 7. Γ-invariant b-elliptic operators and their parametrices. 8. The Γ-index of an elliptic Γ-invariant b-differential operator. 9. Virtually nilpotent groups and spectral properties. 10 The heat equation on Galois coverings with boundary. III. Higher Atiyah-Patodi-Singer index theory. 11. The Λ-b-Mishenko-Fomenko calculus. 	49
 7. Γ-invariant b-elliptic operators and their parametrices 8. The Γ-index of an elliptic Γ-invariant b-differential operator 9. Virtually nilpotent groups and spectral properties 10 The heat equation on Galois coverings with boundary III. Higher Atiyah-Patodi-Singer index theory. 11. The Λ-b-Mishenko-Fomenko calculus	
 8. The Γ-index of an elliptic Γ-invariant b-differential operator 9. Virtually nilpotent groups and spectral properties	53
 9. Virtually nilpotent groups and spectral properties	57
 10 The heat equation on Galois coverings with boundary III. Higher Atiyah-Patodi-Singer index theory. 11. The Λ-b-Mishenko-Fomenko calculus 	63
III. Higher Atiyah-Patodi-Singer index theory. 11. The Λ-b-Mishenko-Fomenko calculus	67
11. The Λ -b-Mishenko-Fomenko calculus	71
	79
12. Virtually nilpotent groups and the $\Psi_{b,\mathcal{B}^{\infty}}^*$ -calculus	85
13. Noncommutative superconnection and the b -Chern character.	91
14. A higher Atiyah-Patodi-Singer index formula	97
15. Applications to positive scalar curvature questions	107
IV. Appendices.	
16. Appendix A: Proof of the \mathcal{B}^{∞} -decomposition	109
17. Appendix B: Proof of the \mathcal{B}^{∞} -b-decomposition	117

0. Introduction.

One of the fundamental tools in the development of index theory for elliptic operators has been the use of heat-kernel techniques. As this introduction in meant for a wide audience, we briefly recall the main point of this approach. Suppose, for simplicity, that M is an even dimensional closed *spin* compact manifold with a fixed spin structure. Let $S = S^+ \oplus S^-$ be the bundle of spinors and let D be the Dirac operator associated to the given spin structure. The operator D is formally self-adjoint and odd with respect to the \mathbb{Z}_2 -grading; thus $D^{\pm} : C^{\infty}(M, S^{\pm}) \to C^{\infty}(M, S^{\mp})$ and $D^- = (D^+)^*$. The heat operator of the Dirac laplacian, $\exp(-tD^2)$, is a smoothing operator for each t > 0. Thus the Schwartz kernel of $\exp(-tD^2)$, the heat kernel, is smooth on $M \times M$ and it is therefore trace class acting on the Hilbert space of L^2 sections of S. Consider the supertrace of $\exp(-tD^2)$, STr $(\exp(-tD^2)) \equiv \operatorname{Tr}(\exp(-tD^-D^+)) - \operatorname{Tr}(\exp(-tD^+D^-))$. The vanishing of the trace on commutators implies that this difference does not depend on t, thus

$$\frac{d}{dt}(\operatorname{STr}\left(\exp(-tD^2)\right)) = 0 \tag{0.1}.$$

Moreover, by Lidski's theorem, it is given by the difference of the integrals of the two heat kernels over the diagonal Δ of $M \times M$. It is well known that as $t \to +\infty$ the heat operator converges exponentially to the orthogonal projection onto the null space of D^2 . This implies that STr (exp($-tD^2$)) converges exponentially to the supertrace of the projection onto the null space of D^2 which is easily seen to be the index of D^+ . On the other hand

Société Mathématique de France

as $t \to 0^+$ the heat kernel restricted to the diagonal converges itself to a density on $\Delta \equiv M$ which is *explicitly computable*. We denote this density by $AS_{[n]}$, *n* being the dimension of the manifold *M* and AS being an explicit differential form constructed out of the riemannian curvature tensor. The index theorem for D^+ then follows by equating the integral over $\Delta \equiv M$ of this explicit geometric expression with the supertrace of the projection onto the null space of D^2 (which is the index of D^+). Here formula (0.1) has been used. Thus

$$\operatorname{ind}(D^+) = \int_M \operatorname{AS}$$

What we have just explained is a sketch of the proof of the *local* index theorem for Dirac operators (see [ABP][G][BGV]).

The fascinating idea of using the heat equation to investigate the index of Dirac operators (due to McKean and Singer in its first formulation) opened the way to a variety of extensions of the original results of Atiyah and Singer, some of which will be now recalled.

In a fundamental series of articles, Atiyah, Patodi and Singer [APS 1,2,3] extended the results of [AS 1,3] to Dirac operators on manifolds with boundary.

Thus suppose now that M has a boundary ∂M and that the riemannian metric is of product type near the boundary. The Dirac operators D^{\pm} can be written, near the boundary, as $\pm \partial/\partial u + D_0$ with u equal to the normal variable to the boundary and D_0 the Dirac operator on ∂M . The operator D_0 is elliptic and essentially self-adjoint. Let Π_{\geq} be the spectral projection corresponding to the non-negative eigenvalues of D_0 and let

$$C^{\infty}(M, S^+, \Pi_{>}) = \{ s \in C^{\infty}(M, S^+) \mid \Pi_{>}(s|_{\partial M}) = 0 \}.$$

The Atiyah-Patodi-Singer theorem [APS 1] states that the operator D^+ acting on Sobolev completions of $C^{\infty}(M, S^+, \Pi_{\geq})$ (we denote this operator by $D^+_{\Pi_{\geq}}$) is a Fredholm operator with index

$$\operatorname{ind}(D^+_{\Pi_{\geq}}) = \int_M \operatorname{AS}\, - rac{1}{2}(\eta(D_0) + \operatorname{dim}\operatorname{null} D_0).$$

Here $\eta(D_0)$ is the eta invariant of the self-adjoint operator D_0 . It is a spectral invariant that measures the *asymmetry* of the spectrum of D_0 . It

Mémoires 68

is defined as the value at s = 0 of the meromorphic continuation of the complex function

$$\sum_{\lambda
eq 0} \operatorname{sign} \lambda \, |\lambda|^{-s} \quad \Re s >> 0$$

with λ running over the eigenvalues of D_0 . Equivalently, using the Mellin transform,

$$\eta(D_0) = \frac{2}{\sqrt{\pi}} \int_0^\infty \operatorname{Tr}(D_0 \, e^{-(t \, D_0)^2}) dt \equiv \int_0^\infty \eta(D_0)(t) dt. \tag{0.2}$$

The proof of the Atiyah-Patodi-Singer theorem relies heavily on the heatkernel method.

The Atiyah-Patodi-Singer index theorem has seen a number of reformulations and alternative proofs. Among the latest contributions to the subject we mention here the *b*-calculus approach of Melrose [Me] (see also [P1][MeNi]). In this new approach microlocal techniques are used in order to give an elegant and conceptually simple proof of the original result of Atiyah-Patodi-Singer (in fact for metrics which are more general then those, product-like near the boundary, considered in [APS 1]). We refer the uninitiated reader to the introduction of [Me] for a very readable summary of the main ideas surrounding the *b*-calculus proof.

We come now to Bismut's fundamental proof of the *local* family index theorem for Dirac operators on closed manifolds [B]. Given a smooth family of Dirac operators $D = (D_z)_{z \in B}$ acting on $C^{\infty}(M_z, S_z)$ and parametrized by a compact manifold B, we can consider the associated (regularized) index bundle $\operatorname{Ind}(D) = [\operatorname{null}(D^+)] - [\operatorname{null}(D^-)]$, an element in the K-theory $K^0(B)$ of the base B, and the associated Chern character $\operatorname{Ch}(\operatorname{Ind}(D))$, a cohomology class in $H^{\operatorname{even}}(B, \mathbb{R})$. From an algebraic point of view the index bundle can be seen as the formal difference of two finitely generated projective $C^0(B)$ modules, $C^0(B)$ denoting the algebra of continuous functions on B (see [A]). Thus $\operatorname{Ind}(D) \in K_0(C^0(B))$, with $K_0(C^0(B))$ equal to the 0th algebraic Kgroup of $C^0(B)$. This point of view will be exploited later

The problem is once again to give a geometric formula for Ch(Ind(D)), an *a priori* analytic object. The cornerstone of Bismut's treatment of the family index theorem is the use of the superconnection formalism (see also [Q]). Instead of considering the family of Dirac laplacians (D_z^2) one considers

Société Mathématique de France

a family of generalized laplacians with differential form coefficients. This new family is manufactured out of a superconnection on the infinite dimensional bundle, over B, whose fiber at $z \in B$ is equal to $C^{\infty}(M_z, S_z)$. The fiber supertraces of the heat-kernels associated to this new family of generalized laplacians combine to give a *smooth* differential form on B. We denote by K_t the family of heat-kernels and by $STr(K_t)$ this smooth differential form. Bismut then proves that $STr(K_t)$ satisfies the following properties

- (i) It is a closed differential form $\forall t > 0$.
- (ii) It does not depend on t modulo exact forms: $d/dt(\operatorname{STr}(K_t)) = d_B \alpha_t$.
- (iii) It is explicitly computable as $t \to 0^+$.
- (iv) It represents Ch(Ind(D)) in $H^{even}(B)$.

This last property can be proved directly as in Bismut's original argument or by showing, as in [BV][BGV], that the limit as $t \to +\infty$ of $STr(K_t)$ converges as a differential form on B to the Chern character of the index bundle.

Using these properties the *local* version of the family index theorem follows. In particular

$$\operatorname{Ch}(\operatorname{Ind}(D)) = \int_{\operatorname{fibre}} \operatorname{AS} \quad \operatorname{in} \, H^*(B).$$

Among the many implications of Bismut's heat-kernel treatment of the family index theorem we concentrate now on the family version of the Atiyah-Patodi-Singer index theorem. The first result in this direction is due to Bismut and Cheeger [BC 1,2,3]; (D_z) is now a family of Dirac operators on manifolds with boundary, parametrized by a compact smooth manifold B. In order for the family $D_{z,\Pi_{\geq}}^+$ to define a *smooth* (or even continuous) family of Fredholm operators it is necessary that the null spaces of the boundary operators $D_{0,z}$ are of constant dimension in $z \in B$. Notice that under this assumption they form a smooth vector bundle over B, null $(D_0) \rightarrow$ B. Moreover the index bundle $\operatorname{Ind}(D_{\Pi_{\geq}})$ is well defined and the following formula holds

$$\operatorname{Ch}(\operatorname{Ind}(D_{\Pi_{\geq}})) = \int_{\text{fibre}} \operatorname{AS} - \frac{1}{2}(\hat{\eta} + \operatorname{Ch}(\operatorname{null}(D_0))) \quad \text{in } H^*(B)$$
(0.3)

(the formula is fully proved in the invertible case in [BC 1,2] and stated in the constant rank case in [BC 3]; see [MP 1] for a complete proof of (0.3)). In this formula $\hat{\eta}$ is the eta form of Bismut-Cheeger; it is a higher version of the eta invariant, in the sense that the 0-degree component of $\hat{\eta}$ computed

Mémoires 68

at $z \in B$ is equal to $\eta(D_{0,z})$. The Bismut-Cheeger eta form is defined in terms of the superconnection formalism by a formula similar to (0.2). The assumption that the operators of the family D_0 have null spaces of constant dimension plays a crucial role in the proof of the convergence of the integral.

The results of Bismut-Cheeger were improved in [MP 1,2]. The use of a new notion, that of *spectral section* associated to a self-adjoint family of elliptic operators (like D_0), together with the pseudodifferential *b*-calculus, allowed for the formulation and the proof of a *general* Atiyah-Patodi-Singer family index theorem, both in the even and in the odd dimensional case.

Suppose now, as in the beginning of this introduction, that M is a closed compact spin manifold. Let us denote by Γ the fundamental group $\pi_1(M)$ of M and by $\widetilde{M} \to M$ the universal covering of M. The Γ -manifold \widetilde{M} is again spin with a Γ -invariant Dirac operator \widetilde{D} acting on the section of a Γ -invariant spinor bundle \widetilde{S} . It is clear that \widetilde{M} will be in general non-compact. There are two sets of objects that are determined by the appearance of the fundamental group of M.

First we can consider the classifying map $\nu : M \to B\Gamma$ associated to the Γ -bundle $\Gamma \to \widetilde{M} \to M$. For each cohomology class $[\beta] \in H^*(B\Gamma, \mathbb{C})$ we can then consider $\nu^*[\beta] \in H^*_{dR}(M)$ and the complex numbers

$$\int_M \mathrm{AS} \wedge \nu^*[\beta].$$

Recall also that there is a canonical isomorphism between $H^*(B\Gamma, \mathbb{C})$ and the group cohomology $H^*(\Gamma, \mathbb{C})$.

The second set of objects determined by the discrete group $\pi_1(M)$ is more analytic in nature. We can consider the reduced C^* -algebra $C_r^*(\Gamma)$, i.e. the closure in $B(\ell^2(\Gamma))$ of the image of $\mathbb{C}\Gamma$ by the left regular representation, and the infinite dimensional bundles

$$\mathcal{S}^{\pm} = S^{\pm} \otimes (\widetilde{M} \times_{\Gamma} C_r^*(\Gamma)).$$

These are bundles on M with fibres that are finitely generated projective $C_r^*(\Gamma)$ -modules. The operator \widetilde{D} defines operators $\mathcal{D}^{\pm} : C^{\infty}(M, \mathcal{S}^{\pm}) \to C^{\infty}(M, \mathcal{S}^{\mp})$ which are $C_r^*(\Gamma)$ -Fredholm as maps $H^1(M, \mathcal{S}^{\pm}) \to L^2(M, \mathcal{S}^{\mp})$, in the sense that $[\operatorname{null}(\mathcal{D}^+)] - [\operatorname{null}(\mathcal{D}^-)]$ (really $[\operatorname{null}(\mathcal{D}^+ + \mathcal{R}^+)] - [\operatorname{null}(\mathcal{D}^- + \mathcal{R}^-)] \equiv [\mathcal{L}] - [\mathcal{N}]$ for suitable compact perturbations \mathcal{R}^{\pm} , see [R]) is a formal difference of *finitely generated projective* $C_r^*(\Gamma)$ -modules. Thus, as

Société Mathématique de France