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Publié avec le concours du Centre National de la Recherche Scientifique



M. Harris

Institut de Mathématiques de Jussieu, U.M.R. 7586 du CNRS, Université Paris 7,

2 Pl. Jussieu 75251 Paris cedex 05, France.

E-mail : harris@math.jussieu.fr

Url : http://www.math.jussieu.fr/~harris

S. Zucker

Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218 USA.

E-mail : sz@math.jhu.edu

Url : http://www.math.jhu.edu/~sz

2000 Mathematics Subject Classification. — 14G35, 11G18, 14C30, 11F75.

Key words and phrases. — Shimura varieties, automorphic vector bundles, cohomol-

ogy of arithmetic groups. mixed Hodge structures.

M.H.: Supported in part by the National Science Foundation, through Grant DMS-

9203142.

S.Z.: Supported in part by the National Science Foundation, through Grants DMS-

9423689 and DMS-9820958.



BOUNDARY COHOMOLOGY

OF SHIMURA VARIETIES, III:

COHERENT COHOMOLOGY ON HIGHER-RANK

BOUNDARY STRATA AND APPLICATIONS

TO HODGE THEORY

Michael Harris, Steven Zucker

Abstract. — In this article, third of a series, we complete the veri�cation of the

following fact. The nerve spectral sequence for the cohomology of the Borel-Serre

boundary of a Shimura variety Sh is a spectral sequence of mixed Hodge�de Rham

structures over the �eld of de�nition of its canonical model. To achieve that, we

develop the machinery of automorphic vector bundles on mixed Shimura varieties, for

the latter enter in the boundary of the toroidal compacti�cations of Sh; and study the

nerve spectral sequence for the automorphic vector bundles and the toroidal boundary.

We also extend the technique of averting issues of base-change by taking cohomology

with growth conditions. We give and apply formulas for the Hodge gradation of the

cohomology of both Sh and its Borel-Serre boundary.

Résumé (Cohomologie au bord des variétés de Shimura, III). — Dans cet article,

troisième d'une série, nous terminons la véri�cation du fait suivant. La suite spectrale

« du nerf », qui calcule la cohomologie du bord de la compacti�cation de Borel-Serre

d'une variété de Shimura Sh, est une suite spectrale de structures de Hodge-de Rham
mixtes sur le corps de dé�nition de son modèle canonique. Pour le faire, nous dé-

veloppons la théorie de �brés automorphes sur les variétés de Shimura mixtes, car

de tels objets �gurent dans le bord d'une compacti�cation toroïdale de Sh ; et nous
étudions la suite spectrale « du nerf » pour les �brés automorphes et le bord toroïdal.

En plus, nous généralisons nos résultats antérieurs sur la cohomologie avec conditions

de croissance, qui permettent d'éviter les di�cultés associées au changement de base.

En�n, nous énonçons et appliquons des formules pour la graduation de Hodge de la

cohomologie de Sh et celle du bord de sa compacti�cation de Borel-Serre.
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INTRODUCTION

The present article continues the study of the boundary cohomology of Shimura
varieties initiated in [HZ1, HZ2]. Let G be a reductive group over Q, X the symmet-
ric space associated to G(R), and Γ a congruence subgroup of G(Q). We consider
the cohomology of Γ\X with coefficients in the local system Ṽ constructed from a
representation V of G, i.e., H•(Γ\X, Ṽ ) � H•(Γ, V ). It is standard that this coho-
mology can be decomposed as the direct sum of “interior” cohomology, defined as the
image of the cohomology with compact supports H•

c (Γ\X, Ṽ ), and a complementary
“boundary cohomology”that restricts non-trivially to the boundary of the Borel-Serre
(manifold-with-corners) compactification of Γ\X . The designation of boundary coho-
mology is generally non-canonical, and much work has been devoted to constructing
canonical decompositions using Eisenstein series.
By an elaboration on the de Rham theorem, one knows that the cohomology group

H•(Γ\X, Ṽ ) can be expressed as the relative Lie algebra cohomology of the space of V -
valued C∞ functions on Γ\G(R), or even the functions of moderate growth ([B2, §7]).
Thanks to the work of Franke [Fr1], one can replace the functions of moderate growth
by the subspace of automorphic forms, and this can provide the starting point for
an approach to the boundary cohomology. However, in this series of articles we
are concerned only tangentially with the relation between boundary cohomology and
automorphic forms. We choose to work at a more intrinsic level, concentrating instead
on the additional structures onH•(Γ\X, Ṽ ) whenX is a hermitian symmetric domain.
In that case, Γ\X is an algebraic variety, and Ṽ underlies a natural variation of
Hodge structure. Morihiko Saito’s theory of mixed Hodge modules [Sa3] then gives
that H•(Γ\X, Ṽ ) has a corresponding mixed Hodge structure (MHS). The nature
of this MHS at the boundary—more accurately, the associated MHS on the deleted
neighborhood cohomology of the boundary—was the subject of [HZ2].
The “adelic version” of Γ\X is the Shimura variety Sh(G,X), whose connected

components are of the form Γ\X . This has a canonical model over a number field
E. The de Rham isomorphism identifies H•(Sh(G,X), Ṽ ) with the hypercohomology
of of an E-rational complex of coherent sheaves on Sh(G,X); thus H•(Sh(G,X), Ṽ )
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acquires an E-rational structure distinct from the topological rational structure com-
ing from the coefficients Ṽ . In particular, H•(Sh(G,X), Ṽ ) has a Hodge filtration
whose graded pieces are given by the coherent cohomology with coefficients in certain
automorphic vector bundles [H1, Mi2]; the latter have natural E-rational structure.
(This E-rationality can be asserted for de Rham cohomology, without grading for the
Hodge filtration, and that is conjecturally equivalent in this context.) Study of the
boundary cohomology of such automorphic vector bundles was begun in [HZ1].
Both [HZ1] and [HZ2] made essential use of toroidal compactifications of Shimura

varieties (which has its origin in [AMRT]), following [H3] and [H4]. The toroidal
boundary of Sh(G,X) (a divisor with normal crossings), like the Borel-Serre bound-
ary, is stratified according to conjugacy classes of parabolic subgroups of G. The
cohomology of the boundary, both in the topological setting (as above) and in the
coherent setting (i.e., for canonically extended automorphic vector bundles), can be
computed as the abutment of the spectral sequence for the closed covering given by
this stratification; this is called the nerve spectral sequence. In [HZ1] we analyzed
the contribution to the nerve spectral sequence from the strata associated to maximal
parabolics in the coherent setting. The first task of the present article is to extend
this analysis to general parabolics, thereby fulfilling our promise from [HZ1], and
this is carried out in the first three Chapters. This necessitated a generalization in
Chapter 1 of much of the machinery of automorphic vector bundles to the toroidal
compactifications of mixed Shimura varieties (constructed by Pink [P]).
Most of the calculations from [HZ1, §3] go over without change, but there are a

few delicate points, notably the issue of basechange in (3.4). For the latter, we must
recall the role of conditions of growth and decay. These entered in the coherent setting
when we established the existence and degeneration of Leray spectral sequences for
morphisms of toroidally compactified varieties and the corresponding morphisms of
canonical (or subcanonical) extensions of automorphic vector bundles. In effect, it
enabled us to circumvent the complications related to basechange at infinity. As
suggested above, this last point recurs here. We are obliged to prove (in (2.3)) a
generalization to mixed conditions of growth and decay, enabling us, in effect, to
isolate a single boundary stratum.
Our main result in Chapter 3 is that the differentials in the E1-term of the nerve

spectral sequence for coherent cohomology decompose naturally into pieces that ei-
ther are given in terms of restriction maps on pure Shimura varieties or are “purely
topological” (see (3.5.4)). Via Franke’s interpretation of cohomology in terms of auto-
morphic forms, this implies (see (3.6)) that the constant term maps for cohomology,
expressed as integration of an automorphic form along the unipotent radical of ap-
propriate parabolic subgroups, are rational with respect to the de Rham rational
structure; for maximal parabolics, this was already obtained in [HZ1, 4.8].

MÉMOIRES DE LA SMF 85



INTRODUCTION 3

The nerve spectral sequence for the topological cohomology H•(Γ\X, Ṽ ) was stud-
ied in detail in [HZ2]. Hodge-theoretic considerations require (algebraic) compacti-
fications, and the toroidal compactifications were convenient to use for this purpose
as well. It was a subtle matter to compare the deleted neighborhoods of the Borel-
Serre and toroidal boundary strata associated to a given parabolic subgroup (see
[HZ2, §2]). We constructed isomorphisms between them that are compatible with re-
striction maps, allowing for transport of structure from the latter to the former. From
this, it follows that the differentials in the topological nerve spectral sequence are mor-
phisms of mixed Hodge structures. In particular, they induce maps after grading for
the Hodge filtration F . Since a morphism of mixed Hodge structures is determined
by its gradation for F , it follows, for instance, that ghost classes exist in H•(Γ\X, Ṽ )
if and only if they exist in GrFH•(Γ\X, Ṽ ) (see (4.6.7)). (Recall that a ghost class
in H•(Γ\X, Ṽ ) is a cohomology class whose restriction to the Borel-Serre boundary
is non-zero, yet whose restriction to each face (stratum) thereof is zero.) In (4.1),
we compare the graded differentials to the results obtained for the differentials in the
case of the coherent cohomology. To that end, we derive a formula for the deleted
neighborhood cohomology of a boundary stratum as de Rham cohomology on a suit-
able toroidal compactification of the associated (Baily-Borel) boundary component
(see (4.1.9)).
Of course, the above can be repeated for the weight filtration. For an example of

the use of weights to rule out ghost classes (cf. (4.6.14)), see [Z5,App.A].(1) We are
still seeking a satisfactory way of dealing with the entire mixed Hodge structure. It
is therefore strongly to be feared that this article is not the last of the series . . . The
content of the first three chapters of this article completes the verification of results
announced in [HZ1, §5] and in [H5]. They can be summarized by saying that the
(topological) nerve spectral sequence is a spectral sequence of mixed Hodge-de Rham
structures over the field of definition of the canonical model.
In Chapter 4, we continue to develop the Hodge theoretic material from [HZ2, §5].

In (4.2), we reformulate the results in (4.1) by using the “minimal model” of the
holomorphic de Rham complex, viz., the dual Bernstein-Gelfand-Gelfand complex,
and deduce the E-rational version of (4.1.9).
A big surprise in this work was the discovery of another interesting filtration on

the boundary complex, whose spectral sequence is, like the nerve spectral sequence, a
spectral sequence of mixed Hodge structures. In a way, there is nothing new about this
filtration, which we call the filtration by holomorphic rank; it is given by the pullback
to the Borel-Serre boundary of the filtration of the Baily-Borel Satake boundary by

(1)The correct outcome of the calculation presented in the latter is that there are no ghosts for

GSp(4) when the representation V is generic, i.e., where the highest weight for Sp(4) has positive

inner product with both simple roots. When V is trivial, on the other hand, the calculation does

allow for a weight-two ghost class in H2(Γ\X,Q), and such a class is determined in [KR, 14.1.3].
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(unions of) boundary strata of increasing dimension (see also (4.4.15)). In a sense
that can be made precise, its E1-term is closer to the abutment than that of the nerve
spectral sequence, though further from the question of ghost classes. We treat the
holomorphic rank filtration in (4.4), though the same considerations already show
up in (3.5) in the coherent setting. Cases of the latter give the Hodge components
for the E1-term of the topological holomorphic rank spectral sequence, and this gets
examined in (4.5).
Several fundamental questions remain open. The analysis of cohomology of Shimu-

ra varieties should be extended to the intersection cohomology of their minimal (Baily-
Borel) compactifications. The Zucker conjecture, proved by Looijenga [L] and Saper-
Stern [SS], asserts that this cohomology is isomorphic to the L2-cohomology, or again
to the Lie algebra cohomology of square-integrable C∞ functions, or by [Fr1], of
square-integrable automorphic forms. However, it is not known whether this isomor-
phism identifies Morihiko Saito’s Hodge structure with the analytic Hodge structure
on L2-cohomology (the one given a priori by the L2 harmonic forms). In Chapter 5 we
obtain a partial result in this direction: we show that the map from L2-cohomology
of the open Shimura variety to ordinary cohomology is a morphism of (mixed) Hodge
structures (this is a small improvement over what was asserted in [H5, 3.3.9]). We
do not address the question of whether intersection cohomology carries a de Rham
rational structure.
It is also true that not all questions are treated in maximum generality. For in-

stance, we have not studied the cohomology of a general automorphic vector bundle or
variation of mixed Hodge structure on a mixed Shimura variety, but have rather been
content to work out the cases directly relevant to the cohomology of pure Shimura
varieties. Experience suggests these omissions will return to haunt us (providing even
more impetus for article IV?). Another thing absent is the exploration of relations
between our constructions and the general polylogarithms constructed by Wildeshaus
[W1, W2].
Much of this work was begun at the time of writing of [H5], where some of our

results were announced. The actual writing of the present article did not get under
way until the second-named author visited Université Paris 7 in May, 1997. We
both wish to thank that institution for the hospitality extended on that occasion.
Likewise, a large amount of the work and writing of this article was carried out
while the second-named author was spending Academic Year 1998–99 on sabbatical
at the Institute for Advanced Study in Princeton. We also wish to thank P. Polo for
helpful discussions of the generalized Bernstein–Bernstein–Gelfand resolution, and
Z. Mebkhout for help with the proof of Proposition (4.2.21). We thank J. Wildeshaus
for numerous thoughtful comments on both the content and the exposition of the
article. Finally, we are grateful to the referee for his careful reading of the first
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