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WEAKLY RESONANT TUNNELING INTERACTIONS
FOR ADIABATIC QUASI-PERIODIC SCHRODINGER
OPERATORS

Alexander Fedotov, Frédéric Klopp

Abstract. — In this paper, we study spectral properties of the one dimensional periodic
Schrodinger operator with an adiabatic quasi-periodic perturbation. We show that
in certain energy regions the perturbation leads to resonance effects related to the
ones observed in the problem of two resonating quantum wells. These effects affect
both the geometry and the nature of the spectrum. In particular, they can lead to
the intertwining of sequences of intervals containing absolutely continuous spectrum
and intervals containing singular spectrum. Moreover, in regions where all of the
spectrum is expected to be singular, these effects typically give rise to exponentially
small “islands” of absolutely continuous spectrum.

Résumé (EVet tunnel faiblement résonant pour des opérateurs de Schrodinger quasi-
périodiques adiabatiques)

Cet article est consacré a ’étude du spectre d’une famille d’opérateurs quasi-
périodiques obtenus comme perturbations adiabatiques d’un opérateur périodique
fixé. Nous montrons que, dans certaines régions d’énergies, la perturbation entraine
des phénomeénes de résonance similaires & ceux observés dans le cas de deux puits. Ces
effets s’observent autant sur la géométrie du spectre que sur sa nature. En particulier,
on peut observer un entrelacement de types spectraux i.e. une alternance entre du
spectre singulier et du spectre absolument continu. Un autre phénoméne observé est
I’apparition d’ilots de spectre absolument continu dans du spectre singulier dus aux
résonances.
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CHAPTER 1

INTRODUCTION

The present paper is devoted to the analysis of the family of one-dimensional quasi-
periodic Schrédinger operators acting on L?(R) defined by
2

1.1 H,.— -2
(1.1) ’ dx?

+v(z — 2) + acos(ex).
We assume that

(H1) v: R — R is a non constant, locally square integrable, 1-periodic function;

(H2) ¢ is a small positive number chosen such that 27 /e be irrational;

(H3) z is a real parameter;

(H4) « is a strictly positive parameter that we will keep fixed in most of the paper.
As ¢ is small, the operator (1.1) is a slow perturbation of the periodic Schrédinger
operator

d2
dx?

acting on L2(R). To study (1.1), we use the asymptotic method for slow perturbations

(1.2) Hy = + ()

of one-dimensional periodic equations developed in [10] and [12].

The results of the present paper are follow-ups on those obtained in [11, 14, 13]
for the family (1.1). In these papers, we have seen that the spectral properties of
H, . at energy E depend crucially on the position of the spectral window ¥ (E) :=
[E — a, F + o] with respect to the spectrum of the unperturbed operator Hy. Note
that the size of the window is equal to the amplitude of the adiabatic perturbation. In
the present paper, the relative position is described in figure 1.1 i.e., we assume that
there exists J, an interval of energies, such that, for all £ € J, the spectral window
F(E) covers the edges of two neighboring spectral bands of Hy (see assumption (G)).
In this case, one can say that the spectrum in J is determined by the interaction of
the neighboring spectral bands induced by the adiabatic perturbation.

The central object of our study is the monodromy equation, a finite difference
equation determined by the monodromy matrix for the family (1.1) of almost periodic
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2 CHAPTER 1. INTRODUCTION
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FIGUrE 1.1. “Interacting” bands

operators. The monodromy matrix for almost periodic equations with two frequencies
was introduced in [11]. The passage from (1.1) to the monodromy equation is a
non trivial generalization of the monodromization idea from the study of difference
equations with periodic coefficients on the real line, see [6].

Let us now briefly describe our results and the heuristics underlying them. Let
E(x) be the dispersion relation associated to Hy (see section 2.1.2); consider the real
and complex iso-energy curves, respectively I'z and T, defined by

(1.3) T'r = {(¢,k) € R E(x) +a-cos(¢) = E},
(1.4) I':={((,k) € C* E(k) + a-cos(¢) = E}.

The dispersion relation k — E(x) being multi-valued, in (1.4), we ask that the equa-
tion be satisfied at least for one of the possible values of E(k).

The curves I' and 'y are both 2m-periodic in the k- and (-directions; they are
described in details in section 11.6. The connected components of I'r are called real
branches of T.

Consider an interval J such that, for E € J, the assumption on the relative position
of the spectral window and the spectrum of H, described above is satisfied (see
figure 1.1). Then, the curve I'g consists of an infinite union of connected components,
each of which is homeomorphic to a torus; there are exactly two such components in
each periodicity cell, see figure 1.2. In this figure, each square represents a periodicity
cell. The connected components of I'g are represented by full lines; we denote two of
them by o and 7.

The dashed lines represent loops on I' that connect certain connected components
of I'g; one can distinguish between the “horizontal” loops and the “vertical” loops.
There are two special horizontal loops denoted by vp,0 and v, ; the loop y4,0 (resp.
Yh,x) connects Yo to vx — (2m,0) (resp. 7o to 7). In the same way, there are two
special vertical loops denoted by v, o and 7, »; the loop 7, 0 (resp. vy,») connects 7o
to vo + (0,27) (resp. v« to v + (0, 27)).

The standard semi-classical heuristics suggests the following spectral behavior.
To each of the loops 7y and ~,, one associates a phase obtained by integrating the
fundamental 1-form on I" along the given loop; let &g = ®o(E) (resp. @, = ,(E)) be
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F1Gure 1.2. The adiabatic phase space

one half of the phase corresponding to 7y (resp. . ). These phases define the quanti-
zation conditions:

1 1
(1.5) SOg(E) =~ +nr and  ~®.(E)=— +nmr, neN

€ 2 € 2
Each of these conditions defines a sequence of energies in J, say (Eél))l and (Eﬁ'))l,.
For € sufficiently small, the spectrum of H, . in J should then be located in a neigh-
borhood of these energies.

Moreover, to each of the complex loops ¥4.0, Vh,x, Vv,0 and 7Yy, one naturally
associates an action obtained by integrating the fundamental 1-form on I' along the
loop. For v € {0,7} and a € {v, h}, we denote by S, , the action associated to g,
multiplied by /2. For E' € R, all these actions are real. One orients the loops so that
they all be positive. Finally, we define tunneling coefficients as

ta,u = 6_Sa’u/67 Ve {0777}7 a € {U7h}.

When the real iso-energy curve consists in a single torus per periodicity cell (in this
case, the energy window overlaps a single edge of a spectral band of Hy instead of
two as in Figure 1.1), the spectrum of H, . is contained in a sequence of intervals
described as follows (see [11]):

— each interval is neighboring a solution of one of the quantization condition;

— the length of the interval is of the order of the largest tunneling coefficient asso-
ciated to the loop;

— roughly, the nature of the spectrum is determined by the ratio of the vertical
tunneling coefficient to the horizontal one:

— if this ratio is large, the spectrum is singular;
— if the ratio is small, the spectrum is absolutely continuous.
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4 CHAPTER 1. INTRODUCTION

In the present case, one must moreover take into account the possible interactions
between the tori living in the same periodicity cell. Similarly to what happens in the
standard “double well” case (see [16, 26, 17]), this effect only plays an important role
when the two energies, generated each by one of the tori, are sufficiently close to each
other. In this paper, we do not consider the case when these energies are “resonant”,
i.e. coincide or are “too close” to one another, but we nevertheless “go” up to the case
of exponentially close energies.

Let Ey be an energy satisfying the quantization condition (1.5) defined by ®g;
let 6 be the distance from FEj to the sequence of energies satisfying the quantization
condition (1.5) defined by ®,. We now discuss the possible cases depending on this
distance. Let us just add that, as the sequences of energies satisfying the quantization
equation given by ®¢ or ®, play symmetric roles, in this discussion, the indexes 0
and 7 can be interchanged freely.

First, we assume that, for some fixed n > 1, this distance is of order at least ™. In
this case, near Fy, the states of the system don’t “see” the other lattice of tori, those
obtained by translation of the torus ~,; nor do they “feel” the associated tunneling
coefficient ¢, . Near Ey, everything is as if there was a single torus, namely a translate
of v, per periodicity cell. Near Ejy, the spectrum of H, . is located in a interval of
length of order of the largest of the tunneling coefficients ¢, o and t;, = tp, otn,~ (see
section 2.3.3). And, the nature of the spectrum is determined by quotient ¢, o/t

So, in the energy region not too close to solutions to both quantization conditions
in (1.5), we see that the spectrum is contained in two sequences of exponentially
small intervals. For each sequence, the nature of the spectrum is obtained from com-
paring the vertical to the horizontal tunneling coefficient for the torus generating the
sequence. As the tunneling coefficients for both tori are roughly “independent” (see
section 2.7.5), it may happen that the spectrum for one of the interval sequences is
singular while it is absolutely continuous for the other sequence. If this is the case,
one obtains numerous Anderson transitions i.e., thresholds separating a.c. spectrum
from singular spectrum (see figure 2.3(b)).

Let us now assume that J is exponentially small, i.e. of order e~/ for some fixed
positive 1 (not too large, see section 2.6). This means that we approach the case of
resonant energies. Note that, this implies that there is exactly one energy F. satis-
fying (1.5) for @, that is exponentially close to FEy; all other energies satisfying (1.5)
for @, are at least at a distance of order ¢ away from Ej.

Then, one can observe two new phenomena. First, there is a repulsion of Iy and
I, the intervals corresponding to Ey and E, respectively and containing spectrum.
This phenomenon is similar to the splitting phenomenon observed in the double well
problem (see [16, 26, 17]). Second, the interaction can change the nature of the
spectrum: the spectrum that would be singular for intervals sufficiently distant from
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