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TOPICS ON HYPERBOLIC POLYNOMIALS IN
ONE VARIABLE

Vladimir Petrov Kostov

Abstract. — The book exposes recent results about hyperbolic polynomials
in one real variable, i.e. having all their roots real. It contains a study of the
stratification and the geometric properties of the domain in R” of the values
of the coefficients a; for which the polynomial P := z™ + a1z 14 4a,is
hyperbolic. Similar studies are performed w.r.t. very hyperbolic polynomials,
i.e. hyperbolic and having hyperbolic primitives of any order, and w.r.t. stably
hyperbolic ones, i.e. real polynomials of degree n which become hyperbolic af-
ter multiplication by z* and addition of a suitable polynomial of degree k — 1.
New results are presented concerning the Schur-Szegé composition of polyno-
mials, in particular of hyperbolic ones, and of certain entire functions. The
question what can be the arrangement of the %n(n + 1) roots of the polyno-
mials P, P(), ... P("=1) ig studied for n < 5 with the help of the discriminant
sets Res(P(®), PU)) = 0.
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Résumé (A propos des polyndmes hyperboliques A une variable)

Le livre expose des résultats récents sur les polynémes hyperboliques (c’est-
a-dire a racines réelles) a4 une variable réelle. Il contient ’étude de la strati-
fication et des propriétés géométriques du domaine dans R™ des valeurs des
coeflicients a; pour lesquelles le polynéme P := z™ + a1z™ 1l + ... +a, est
hyperbolique. Des études semblables sont effectuées par rapport aux poly-
ndémes trés hyperboliques, c’est-a-dire hyperboliques et ayant des primitives
hyperboliques de tout ordre, et par rapport aux polynémes stablement hyper-
boliques, c’est-a-dire réels de degré n et qui deviennent hyperboliques aprés
multiplication par z* et addition d’un polynéme convenable de degré k — 1.
De nouveaux résultats sont présentés qui concernent la composition de Schur-
Szeg de polynoémes, en particulier hyperboliques, et de certaines fonctions
entiéres. Pour n < 5, la question « quel peut étre ’arrangement des %n(n +1)
racines des polynomes P, P, ... P("=1)  est abordée a I’aide des ensembles
discriminants Res(P®, PU)) = 0.
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CHAPTER 1

INTRODUCTION

A real polynomial in one variable is hyperbolic if it has only real roots. By
the Rolle theorem, the derivative of a hyperbolic polynomial of degree n > 1
has n — 1 real roots counted with multiplicity, so it is a hyperbolic polyno-
mial of degree n — 1. Although being a particular case of real ones, hyperbolic
polynomials (HPs) arise in a natural way in many contexts and are interest-
ing to study in their own. Examples are given by characteristic polynomials
of symmetric matrices or orthogonal polynomials from the well-known fami-
lies of Hermite, Laguerre, Chebyshev and Jacobi. (The theory of orthogonal
polynomials is exposed in many monographies, for example [134] or [61].)

In the present book we speak mainly about recent results concerning HPs.
(A reader needing a comprehensive book about polynomials could use [113],
[125] or [126].) The book contains only part of the proofs of the described
results, the ones that illustrate the main ideas and which are worth under-
standing better. The rest of the proofs can be found in the references.

If one changes continuously the coefficients (hence the roots) of an HP, then
this could lead to the appearance of (a) multiple root(s) and subsequent loss
of hyperbolicity. To have a good idea about how this happens one needs to
study the hyperbolicity domain II of the family of polynomials

P:=z"+a12" 1+ +ap,

i.e. the set of values of the real coeflicients a; for which the corresponding
polynomial is hyperbolic. This is done in Chapter 2. Most often we set a; = 0,
ag = —1 (thus decreasing by 2 the number of parameters) which can be ob-
tained by an affine change of the variable x.

In what follows we use the notion of a multiplicity vector (MV), i.e. a vector
whose components equal the multiplicities of the distinct roots of an HP when
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the roots are listed in the increasing order. Sometimes it is better to use a
reverted multiplicity vector (RMV), i.e. a vector whose components are the
multiplicities of the roots of an HP when the roots are given in the decreasing
order.

To understand how multiple roots (and their multiplicity) can appear when
the coefficients are varied one has to consider the stratification of the hyperbol-
icity domain (denoted by (S1)) defined by the MVs of the polynomials of the
family, see Section 2.1. This is a Whitney stratification, i.e. one that satisfies
the following two properties:

(a) For two strata A and B such that B is contained in A, denote by T;
the tangent spaces to A at points x; € A. Suppose that (z;) is a sequence of
points of A converging to some point y € B. Then the limit lim;_,, T; exists
and it contains the tangent space to B at the point y.

(b) With A and B as in property (a), for each sequence z1, x2, ... of points
in A and each sequence y1, ¥z, ... of points in B, both converging to the same
point y in B, such that the sequence of secant lines L,, between x,, and y,,
converges to a line L as m — oo, and the sequence of tangent planes T;, to
A at the points xz,, converges to a plane T as m — oo, one has that L is
contained in T'. The existence of the limit plane T follows from property (a).

The space Oa; - - - a, is the one of the coefficients of real monic degree n
polynomials. It is natural to study the projections IT*¥ of the hyperbolicity
domain in the subspaces Oa; - - - i (i.e. projections which “forget the last n—k
coefficients”; these projections arise when a polynomial is being differentiated).
This is done in Subsection 2.1.2. It turns out that the non-void fibres of the
projections IT¥ — IT¥~1 are either segments or points. The latter occur exactly
when the point of IT*~1 belongs to the boundary of IT¥~1, see Theorem 2.1.12.

In Subsection 2.1.4 we cite results of V.I. Arnold, I. Méguerditchian and
the author that tell which strata build up the boundary of the projections II*.
These results are generalized (see Subsection 2.1.5) in the situation when the
projections in the spaces Oay - - - ax not of II but of its strata are considered.

Remark 1.0.1. — The results of Chapters 2 and 3 are formulated with the
help of reverted multiplicity vectors. In Chapters 4 and 5 we use MVs. The
preference for RMVs or MVs is dictated by how it is easier to formulate the
results.

Suppose that a; = 0, ag = —1. Then the domain II and the sets IT¥ possess
the Whitney property: The curvilinear distance is equivalent to the Euclidean
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CHAPTER 1. INTRODUCTION 3

one. This is proved in Section 2.2. The proof reposes on geometric properties
of II, proved in Subsection 2.1.3, which are of independent interest. The fact
that a given compact set has the Whitney property implies that C*- or C*°-
functions defined on the set can be extended to such functions defined in its
neighbourhood.

In Section 2.3 we formulate the result that the non-void Vandermonde man-
ifolds are contractible. These manifolds are the preimages of the mapping

roots of P —— elementary symmetric functions of the roots

when the first [ coefficients of the polynomial are fixed. An interesting corollary
of their contractibility is that the n ordered values of a random variable are
uniquely defined by its first n moments, see Corollary 2.3.5.

Differentiation preserves hyperbolicity, but this is not always the case of
integration. That’s why in Chapter 3 we consider very hyperbolic polynomials
of degree n, i.e. hyperbolic and having hyperbolic primitives of all orders, see
Section 3.1. We study also stably hyperbolic ones, i.e. not necessarily hyper-
bolic, but which after multiplication by z*, £ € N, and addition of a suitable
degree k — 1 polynomial become hyperbolic. Stably hyperbolic polynomials are
introduced in Section 3.5.

The two classes are closely related. In particular, the domain of stably hy-
perbolic polynomials of a given degree is obtained from the corresponding do-
main of very hyperbolic polynomials by linear changes of the coefficients, see
Theorem 3.6.6. The domains of very hyperbolic and of stably hyperbolic poly-
nomials of degree 4 and 5 are considered respectively in Sections 3.2 and 3.4.

Remark 1.0.2. — In the present book we speak about strata in several places.
In Chapter 3 we describe the boundary of the domain of very hyperbolic
polynomials of degree 4 and 5 in terms of strata defined by RMVs some of
whose components equal co. We do not systematically study the corresponding
stratification.

It turns out that the domain of very hyperbolic polynomials has the same
properties with regard to the projections in the spaces Oa; - - - ax (see above)
as the domain of hyperbolic polynomials. This is shown in Section 3.3.

The class of diagonal linear operators acting on the space of formal power
series and which preserve hyperbolicity of all partial sums of the series is of par-
ticular interest to analysts. Such operators are known as multiplier sequences.
In Section 3.6 we show how very hyperbolic polynomials arise in the context

SOCIETE MATHEMATIQUE DE FRANCE 2011



4 CHAPTER 1. INTRODUCTION

of multiplier sequences. We also interpret very hyperbolic and stably hyper-
bolic polynomials in the context of the singularity Ao, (bearing in mind that
hyperbolic polynomials are connected with the singularities of the series A,;
see [7] about singularity theory).

It is possible to decide algorithmically whether a given degree 4 polynomial
is very (resp. stably) hyperbolic or not. This is proved in Section 3.7. In Sub-
section 3.7.3 simple necessary conditions for being very or stably hyperbolic
are introduced. They are very close to be necessary and sufficient ones. The
results of these two sections are illustrated by figures showing the domain of
very or stably hyperbolic polynomials of degree 4.

In Chapter 4 we consider the Schur-Szegé composition. For two degree n
polynomials P; := Y7 (%)dlz?, j = 1,2, it is defined by the formula

n

i=0
After introducing the basic definitions and formulae in Section 4.1, we con-
sider in Section 4.2 the case when the polynomials are hyperbolic and one
of them has all its roots of the same sign. In this situation the multiplicity
vector of P; * P, can be deduced from the ones of P; and P,. This class

of polynomials is important because Schur-Szegé composition with and only
with them preserves hyperbolicity, see Theorem 4.2.2. The sequence {d;} of
the coefficients of such a polynomial is called a finite multiplier sequence.

It is natural to ask how the roots (and their multiplicities) of P * P, depend

on the ones of P; and P,. Or at least what can be said about the numbers of
real positive, negative and zero roots of P; X P, if these numbers are known

for P; and P». In Section 4.3 we address this question in the case when P; and
P, are hyperbolic (without restriction on the sign of the roots) or when they
are arbitrary real polynomials.

In Section 4.4 we show that a given polynomial of the form

(z+ D" T+ ez 24+ +eul)

can be presented as a Schur-Szegé composition of n—1 polynomials of the form
(x+1)""!(z+a;). The mapping ® which sends the tuple (c1,...,c,_1) into the
tuple of elementary symmetric polynomials of the quantities a; is affine and
non-degenerate. In Section 4.4.4 we give its eigenvalues (which are rational
positive), its eigenvectors (they are defined by HPs) and we formulate its
geometric properties. We show that the limit of its jth eigenvector as n — oo is
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CHAPTER 1. INTRODUCTION 5

expressed via the corresponding Narayana polynomial (1/5) S°7_, (,7,)(¢)=?
(see Subsection 4.4.3).

Schur-Szeg6 composition can be defined not only in the class of polyno-
mials but also for entire functions, see Section 4.5. We recall the definition
and basic properties of the Laguerre-Pdlya class of entire functions in Subsec-
tion 4.5.1 (see Definition 4.5.1). This class is of particular interest to us since
these functions are uniform limits on compact sets of sequences of hyperbolic
polynomials. Subsection 4.5.1 introduces generalizations of Turdn’s conditions
for a function to belong to the Laguerre-Pélya class LP. These generaliza-
tions are based on the results about very hyperbolic polynomials exposed in
Chapter 3.

The generalization of the mapping ® for entire functions is considered in
Section 4.6. Every entire function of the form e*P,(z), where P, is a degree n
polynomial, P,(0) = 1, is expressed as Schur-Szegd composition of n functions
of the form e®(1 + z/a;). This observation allows to deduce a generalization
of the Descartes rule of signs for functions of the form e*P,(z), see Theo-
rem 4.6.38.

In Chapter 5 we consider root arrangements for HPs and their derivatives.
The classical Rolle theorem states that for an HP, there is a root of its deriva-
tive in the interval between any two of its roots. The theorem applies also to
the derivatives of an HP (which are also HPs). If the roots of the HP and of its
derivatives are written in a string in the increasing order, one obtains the ar-
rangement of these roots on the real line. The arrangement is non-degenerate
if there are no equalities between any two of the roots of the HP and its
derivatives. All definitions are given in detail in Section 5.1.1.

The Rolle theorem gives necessary conditions, i.e. restrictions upon these
arrangements, and in what follows, we consider only arrangements compatible
with the Rolle theorem. It is natural to ask whether these conditions are
sufficient as well; that is, whether any arrangement compatible with the Rolle
theorem is realizable by the roots of an HP and its derivatives. When the
degree of the HP is < 3, the answer to this question is positive.

It turns out that when the degree of the HP is > 4, this is no longer true. The
case of degree 4 is considered in detail in Section 5.2 (see Subsection 5.2.1). On
Fig. 15 we present the discriminant sets, i.e. sets in the space of the coefficients
of an HP of degree 4 on which two of the derivatives of the HP have a common
root. (The HP is considered to be its Oth derivative.) The figure explains which
arrangements are realizable by HPs and their derivatives and which are not.

SOCIETE MATHEMATIQUE DE FRANCE 2011



6 CHAPTER 1. INTRODUCTION

In that section we introduce a natural generalization of HPs which are the
hyperbolic polynomial-like functions (PLF's) of degree n, i.e. smooth functions
having n roots counted with multiplicity and whose nth derivative vanishes
nowhere. (Sometimes they are called functions convex of the order n.) For de-
gree 4 these functions and their derivatives realize all arrangements. Section 5.2
contains the exhaustive answer to the question which degree 4 arrangements
are realizable by HPs, which by their perturbations and which by PLFs which
are not perturbations of HPs. '

Starting with degree 5, the roots of PLF's and their derivatives do not realize
all arrangements which are compatible with the Rolle theorem (not even all
non-degenerate ones). In Subsection 5.2.2 we consider the discriminant sets
for the family of degree 5 HPs; these sets are presented on several figures
there. Then we give in Subsection 5.2.3 the exhaustive answer to the question
which non-degenerate degree 5 arrangements are realizable by HPs, which by
their perturbations, which by PLFs and which are not realizable by PLFs. In
Subsection 5.2.4 we explain the reason for 46 of the non-degenerate arrange-
ments not to be realizable by the roots of PLFs and their derivatives (the total
number of such arrangements is 50).

Arrangements of the roots of an HP and its derivatives define a stratification
(denoted by (S3)). This is also a Whitney stratification. Its strata are subsets
of the strata of the stratification (S1) defined by the multiplicity vectors. In
Section 5.3 its overdetermined strata are considered. They are subsets in the
space of the coefficients of the family of HPs on which the arrangement contains
a higher number of equalities between roots than expected.

For example in the family of degree 4 HPs P := 2* — 22+ ax +b one expects,
by varying the two parameters a and b, to obtain two equalities between the
roots of the HP and of its derivatives. (It is natural to expect to have one
(two etc.) equalities on a codimension one (two etc.) subset in the space of
coefficients.) However, when one imposes the condition the polynomial to be
divisible by its second derivative (which is equivalent to imposing two equalities
between the roots of P and P”), one obtains automatically that the polynomial
is even, hence 0 is a root of P’ and P"”, i.e. there are not two, but three
equalities between roots. The section contains examples of overdetermined
strata and their exhaustive description up to degree 6.

Remark 1.0.3. — In Subsection 5.1.2 we consider a stratification (S2) of the
space Oaj - --a, defined by the arrangement of the roots of an HP P and
of P) for only one value of k£ > 2. This is also a Whitney stratification. This
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stratification shares with (S1) the property that each new equality between
roots reduces the dimension of the stratum by 1, and that to each arrangement
(to each MV for (S1)) there corresponds a non-empty stratum. This is not the
case of (S3). Indeed, there are 1n(n+1) roots of the HP and all its derivatives
whereas there are only n coefficients of the HP. By changing the coeflicients
one cannot change independently all these roots, therefore one should not
expect all arrangements to be realizable by HPs. (And for n > 4 this is not
the case.) On the other hand, overdetermined strata are the ones, where there
are more equalities between roots than what is expected from the dimension
of the stratum.

In Section 5.4 we consider some problems connected not only with the ar-
rangement of the roots of an HP and its derivatives on the real line, but on
the concrete values which these roots can take.

Chapters 2, 3 and 4 of this book should be read in this order. Chapter 5
can be read right after Chapter 2. Chapter 6 contains a survey of other results
concerning HPs and the links of some of them to the rest of this book.

In the present book we use the following abbreviations:

HP - hyperbolic polynomial, see the beginning of Section 2.1;

(R)MV — (reverted) multiplicity vector, see Definition 2.1.1;

CV — configuration vector (defined after Example 5.1.2);

FMS(n+1) — finite multiplier sequence of length n+ 1 (see Definition 4.2.1);
PLF - polynomial-like function (see the beginning of Section 5.1.1);

TAT - triple of admissible triples (see Definition 4.3.14);

SSC — Schur-Szegé composition (see the beginning of Section 4.1).
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