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DIFFUSION FOR THE
PERIODIC WIND-TREE MODEL

 V DELECROIX, P HUBERT
 S LELIÈVRE

A. – The periodic wind-tree model is an infinite billiard in the plane with identical
rectangular scatterers placed at each integer point. We prove that independently of the size of scatters
and generically with respect to the angle, the polynomial diffusion rate in this billiard is 2/3.

R. – Le vent dans les arbres périodique est un billard infini construit de la manière suivante.
On considère le plan dans lequel sont placés des obstacles rectangulaires identiques à chaque point
entier. Une particule (identifiée à un point) se déplace en ligne droite (le vent) et rebondit de manière
élastique sur les obstacles (les arbres). Nous prouvons qu’indépendamment de la taille des obstacles
et génériquement par rapport à l’angle initial de la particule le coefficient de diffusion polynomial des
orbites de ce billard est 2/3.

1. Introduction

The wind-tree model is a billiard in the plane introduced by P. Ehrenfest and T. Ehren-
fest in 1912 ([7]). We study the periodic version studied by J. Hardy and J. Weber [14]. A
point moves in the plane R2 and bounces elastically off rectangular scatterers following
the usual law of reflection. The scatterers are translates of the rectangle [0, a] × [0, b] where
0 < a < 1 and 0 < b < 1, one centered at each point of Z2. We denote the complement of
obstacles in the plane by T(a, b) and refer to it as the wind-tree model or the infinite billiard
table. Our aim is to understand dynamical properties of the wind-tree model. We denote
by φθt : T(a, b)→ T(a, b) the billiard flow: for a point p ∈ T(a, b), the point φθt (p) is the
position of a particle after time t starting from position p in direction θ.

It is proved in [14] that the rate of diffusion in the periodic wind-tree model is log t log log t

for very specific directions (generalized diagonals which correspond to angles of the
form arctan(p/q) with p/q ∈ Q). Their result was recently completed by J.-P. Conze and
E. Gutkin [6] who explicit the ergodic decomposition of the billiard flow for those directions.
K. Frączek and C. Ulcigrai recently proved that generically the billiard flow is non-ergodic.
P. Hubert, S. Lelièvre and S. Troubetzkoy [17] proved that for a residual set of parameters a
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and b, for almost every direction θ, the flow in direction θ is recurrent. In this paper, we com-
pute the polynomial rate of diffusion of the orbits which is valid for almost every direction θ.
We get the following.

T 1. – Let d(., .) be the Euclidean distance on R2. Then for all parameters
(a, b) ∈ (0, 1)2, Lebesgue-almost all θ and every point p in T(a, b) (with an infinite forward
orbit)

lim sup
T→+∞

log d(p, φθT (p))

log T
=

2

3
.

By the Z2-periodicity of the billiard table T(a, b), our problem reduces to understand
deviations of a-Z2 cocycle over the billiard in a fundamental domain. On the other hand,
as the barriers are horizontals and verticals, an orbit in T(a, b) with initial angle θ from the
horizontal takes at most four different directions {θ, π−θ,−θ, π+θ} (the billiard is rational).
By a standard construction consisting of unfolding the trajectories [29], called the Katok-
Zemliakov construction, the billiard flow can be replaced by a linear flow on a (non compact)
translation surface which is made of four copies of T(a, b) that we denote X∞(a, b) (see
Section 3.2 for the construction). The surface X∞(a, b) is Z2-periodic and we denote X(a, b)

the quotient of X∞(a, b) under the Z2 action. As the unfolding procedure of the billiard flow
is equivariant with respect to the Z2 action, X(a, b) can also be seen as the unfolding of the
billiard in a fundamental domain of the action of Z2 on the billiard table T(a, b).

The position of the particle in X∞(a, b) can be tracked from X(a, b). More precisely, the
position of the particle starting from p ∈ X∞(a, b) in direction θ can be approximated by
the pairing of a geodesic γt(p) of X(a, b) seen as an element of the homology with a cocycle
f ∈ H1(X(a, b);Z2) describing the infinite cover X∞(a, b)→ X(a, b). The growth of pairing
of a fixed cocycle with geodesics in a translation surface is equivalent to the growth of certain
Birkhoff sums over an interval exchange transformation. The estimation can be obtained
from the action of SL(2,R) on strata of translation surfaces H g(α) and more precisely of

the Teichmüller flow which corresponds to the action of diagonal matrices gt =
(
et 0
0 e−t

)
(see Section 2 for precise definitions). As proved by A. Zorich [35, 36] the Kontsevich-Zorich
cocycle over the Teichmüller flow can be used to estimate the deviations of Birkhoff sums
for generic interval exchange transformations with respect to the Lebesgue measure. More
precisely, he proved that the Lyapunov exponents of the Kontsevich-Zorich cocycle is the
polynomial rate of deviations. G. Forni [12] relates this phenomenon to obstructions to solve
cohomological equations and extends Zorich’s proof to a more general context (see Section 9
of [12]).

The surface X(a, b) is a covering of the genus 2 surface L(a, b) which is a so called L-shaped
surface that belongs to the stratum H (2). The orbit of X(a, b) for the Teichmüller flow
belongs to a sub-locus of the moduli space H (24) that we call G.

We now formulate a generalization of A. Zorich’s and G. Forni’s theorems about devi-
ations of ergodic averages that is a central step in the proof of Theorem 1. Let H (α) be
a stratum of Abelian differentials and Y ∈ H (α) a translation surface. The Teichmüller
flow (gt) can be used to renormalize the trajectories of the linear flow on Y . The Kontsevich-
Zorich cocycle B(t)(Y ) : H1(Y ;R) → H1(gt · Y ;R) (or KZ cocycle) measures the growth
of cohomology vectors along the Teichmüller geodesic (gt · Y )t. Let µ be a gt-invariant
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ergodic probability measure on H (α). It follows from [12], that the KZ cocycle is integrable
for the measure µ. From Oseledets multiplicative ergodic theorem, there exist real numbers
ν1(µ) > ν2(µ) > · · · > νk(µ) > 0, such that for µ-almost every non zero Abelian differential
Y ∈ H (α) there exists a unique flag

H1(Y ;R) = Fu1 ⊃ Fu2 ⊃ · · · ⊃ Fuk ⊃ Fuk+1 = F c ⊃ F sk ⊃ · · · ⊃ F s1 ⊃ F s0 = {0}

such that for any norm ‖.‖ on H1(Y ;R), for all 1 ≤ i ≤ k
1. if f ∈ Fui \ Fui+1, then

lim
t→∞

log ‖B(t)(Y ) · f‖
log t

= νi(µ),

2. if f ∈ F si \ F si−1, then

lim
t→∞

log ‖B(t)(Y ) · f‖
log t

= −νi(µ),

3. if f ∈ F c \ F sk , then

lim
t→∞

log ‖B(t)(Y ) · f‖
log t

= 0.

There exist also positive integersmi for i = 1, . . . , k and an integerm such that for µ almost
all translation surface Y the filtration satisfies

– the dimension of F si is m1 + · · ·+mi,
– the dimension of F c is m1 + · · ·+mk + 2m,
– the dimension of Fui is m1 + · · ·+mi−1 + 2mi + · · ·+ 2mk + 2m.

From the definition of the Teichmüller flow and the KZ cocycle, it follows that ν1 = 1. Forni
proved thatm1 = 1 [12]. The Lyapunov spectrum of the KZ cocycle is the multiset of numbers

ν1 = 1 ν2 . . . ν2︸ ︷︷ ︸ . . . νk . . . νk︸ ︷︷ ︸ 0 . . . 0︸ ︷︷ ︸ −νk . . .− νk︸ ︷︷ ︸ . . . −ν2 . . .− ν2︸ ︷︷ ︸ −1 = −ν1.

m2 times . . . mk times 2m times mk times . . . m2 times

The numbers νi(µ) for i = 1, . . . , k are called the positive Lyapunov exponents (with respect
to µ). The subspace F s = F sk is called the stable space (at Y ) of the KZ cocycle.

In order to state a precise statement for deviations, one needs genericity with respect
to Lyapunov exponents but also an extra assumption on recurrence. Let µ be a gt ergodic
measure on some stratum H (α). We say that a surface Y ∈ H (α) is generic recurrent for µ
if there exist compact neighborhoods Ui ⊂ H (α) of Y such that

⋂
i Ui = {Y } and

lim
t→∞

Leb({s; s ∈ [0, t] and gsY ∈ U})
t

= µ(U).

Birkhoff theorem ensures that this condition is satisfied for almost every surface.

T 2. – Let µ be a gt-ergodic measure on a stratum of Abelian differentials. Let νi
for i = 1, . . . , k denote the positive Lyapunov exponents of the KZ cocycle for µ and denote, for
an Oseledets generic surface Y , Fui (Y ), F c(Y ) and F si (Y ) the components of the flag of the
Oseledets decomposition.

Then, for a surface Y ∈ H (α) which is generically recurrent and Oseledets generic for µ, for
every point p ∈ Y with an infinite forward orbit
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1. along the unstable space the growth is polynomial: for all 1 ≤ i ≤ k, for all f ∈ Fui \Fui+1

lim sup
T→∞

log |〈f, γT (p)〉|
log T

= νi,

2. along the central space the growth is sub-polynomial: for all f ∈ F c \ F sk

lim sup
T→∞

log |〈f, γT (p)〉|
log T

= 0,

3. along the stable space the growth is bounded: there exists a constant C such that for all
f ∈ F s

∀T ≥ 0, |〈f, γT (p)〉| ≤ C‖f‖.

Theorem 2 has first been proved by A. Zorich [34, 35, 36] for the Lebesgue measure
on a connected component of a stratum or equivalently for a generic interval exchange
transformation. G. Forni [12] extended the theorem for a very large class of functions and
for certain measures. More precisely, his proof of the lower bound relies on the existence of
a particular translation surface in the support of the measure. A. Bufetov [3] gave a proof of
Case 1 of Theorem 2 (when the cocycle f is associated with a positive Lyapunov exponent)
in the general context of symbolic dynamics which applies in particular to translation flows
(Propositions 2 and 5 of [3]). Our approach uses Veech’s zippered rectangles [31] and gives a
concrete version of the renormalization process by the Teichmüller flow and the Kontsevich-
Zorich cocycle in the flavor of [35, 36] and [12].

On the other hand, from results of A. Eskin, M. Kontsevich and A. Zorich [9] about
sum of Lyapunov exponents in hyperelliptic loci, we deduce that the Lyapunov exponent
for X(a, b) which controls the deviation in the wind-tree model equals 2/3. The value 2/3

comes from algebraic geometry. More precisely, it corresponds to the degree of a subbundle
of the Hodge bundle over the moduli space of complex curves (or Riemann surfaces) in which
the wind-tree cocycle belongs.

Using only Birkhoff and Oseledets theorems, one can prove that the conclusion of Theo-
rem 1 holds for almost every parameters a, b. In order to obtain all parameters we use a recent
result of J. Chaika and A. Eskin [5] which asserts that Birkhoff theorem for regular functions
and Oseledets theorem for the Kontsevich-Zorich cocycle are more regular for SL(2,R)-in-
variant measures: they hold for all surfaces in almost every directions. The work of Chaika
and Eskin strongly relies on previous work of A. Eskin and M. Mirzhakani [10] and A. Eskin,
M. Mirzakhani and M. Mohamadi [11] on SL(2,R)-invariant measures on strata of Abelian
differentials.

The paper is organized as follows. In Section 2 we introduce the tools from Teichmüller
theory which are involved in our proof of Theorem 1. In Section 3, we detail the unfolding
procedure and prove that the distance in Theorem 1 corresponds to a pairing between a
geodesic in X(a, b) with an integer cocycle. Then we reformulate Theorem 1 in the language
of translation surfaces (see Theorem 6). In Section 4 we compute the Lyapunov exponents
relative to every measure on H (24) which is supported on the closure of the SL(2,R)-orbit
of a surface X(a, b). Section 5 is devoted to the proof of Theorem 2.
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