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CONFIGURATION SPACES OF MANIFOLDS WITH BOUNDARY

par Ricardo CAMPOS, Najib IDRISSI,
Pascal LAMBRECHTS & Thomas WILLWACHER

Abstract. — We study ordered configuration spaces of compact manifolds with bound-
ary. We show that for a large class of such manifolds, the real homotopy type of the
configuration spaces only depends on the real homotopy type of the pair consisting
of the manifold and its boundary. We moreover describe explicit real models of these
configuration spaces using three different approaches. We do this by adapting previous
constructions for configuration spaces of closed manifolds which relied on Kontsevich’s
proof of the formality of the little disks operads. We also prove that our models are
compatible with the richer structure of configuration spaces, respectively a module
over the Swiss-Cheese operad, a module over the associative algebra of configurations
in a collar around the boundary of the manifold, and a module over the little disks
operad.

Résumé. (Espaces de configuration de variétés à bord) — Nous étudions les espaces de
configuration de variétés compactes à board. Nous démontrons que pour une large
classe de telles variétés, le type d’homotopie réelle des espaces de configuration ne
dépend que du type d’homotopie réelle de la paire formée par la variété et son bord.
Nous décrivons de plus des modèles explicites pour ces espaces de configuration en
utilisant trois approches différentes. Pour cela, nous adaptons des constructions précé-
dentes pour les espaces de configuration de variétés compactes sans bord qui repo-
saient sur la preuve par Kontsevich de la formalité des opérades des petits disques.
Nous démontrons de plus que nos modèles sont compatibles avec la structure riche des
espaces de configuration, respectivement comme module sur l’opérade Swiss-Cheese,
comme module sur l’algèbre associative des configurations dans un collier autour du
bord de la variété, et comme module sur l’opérade des petits disques.
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INTRODUCTION

Configuration spaces of points on manifolds are classical and yet intriguing objects
in topology. The ordered configuration space of k points on a space X is given by

Confk(X) = {(x1, . . . , xk) ∈ Xk | xi ̸= xj , for i ̸= j}.
Despite the apparent simplicity of the definition, understanding their homotopy type,
or even their rational homotopy type, has been a long-standing endeavor.

The first results in this direction were obtained by Arnold [1] (in 2 dimensions)
and Cohen [13], who computed the cohomology of the configuration spaces of points
in Rn. The real homotopy type of configuration spaces of points on smooth projective
varieties were independently computed by Kriz [33] and Totaro [52].

For closed simply connected manifolds, a way of computing the Betti numbers of
these configuration space has been described by Lambrechts and Stanley [35]. It has
been a long-established conjecture that for such manifolds, the rational homotopy
type of the configuration space depends only on the rational homotopy type of the
manifold [17, Problem 8, p. 518]. For non-simply connected manifolds, this conjecture
has a negative answer, as shown in [40]. Recently, three of the authors [9, 29] proved
that the conjecture is true when restricted to real homotopy types.

Studying configuration spaces of manifolds with boundary is in some aspects
harder, as the their homotopy type should a priori depend on the homotopy types
of the manifold, its boundary, and the inclusion between the two. Some results for
computing the Betti number of configuration spaces of manifolds with boundary are
known [45]. However, due to these difficulties, there has not been such a thorough
study of the homotopy theory of configuration spaces on manifolds with boundary
and in particular, the question of determining whether configuration spaces of com-
pact manifold with boundary is a homotopy invariant remains open. In this work,
we prove that, for compact, simply connected manifolds M with simply connected
boundary satisfying dimM ≥ 4, the real homotopy type of Confk(M) only depends
on the real homotopy type of the pair ∂M ⊂M .

In mathematical physics the study of configuration spaces on manifolds with bound-
ary is also very relevant. For instance, in the BV-BFV formalism [11, 12], in order to
perturbatively quantize gauge theory in the presence of a boundary, one needs a good
understanding of the real homotopy type of configuration spaces on manifolds with
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2 INTRODUCTION

boundary. The construction of propagators and the computation of integrals given by
Feynman rules admit parallels in these contexts.

The aforementioned results mostly focus on the algebro-topological properties of
the configuration spaces on their own. It has long been known, however, that config-
uration spaces carry rich algebraic structures using “gluing”.

More concretely, we consider the operad of little n-disks, initially introduced by
Boardman-Vogt [5], and which consists of configuration of disjoint n-disks (instead of
points) inside the unit n-disk. By considering the centers of each disk, we obtain a
homotopy equivalence between this configuration space and the configuration space
of points in Rn. However, there is a new algebraic structure on configuration of little
disks, namely that of an operad. This operadic structure is given by “composition
products,” obtained by plugging a configuration of k disks inside one of the disks in
a configuration of l disks, to obtain a configuration of k + l − 1 disks.

Here, for technical reason, we actually use a different model of the little
n-disks operad. We consider the Fulton-MacPherson compactification FMn(k)

of Confk(Rn) [2, 21], obtained by allowing points to become infinitesimally close.
The collection FMn = {FMn(k)}k≥0 can be made into a topological operad, which is
equivalent in homotopy to the little n-disks operad.

For a closed parallelized manifold M , there exists a similar compactification FMM

of the configuration space of points on M . This collection FMM carries the structure of
an operadic right FMn-module, again using insertion of configuration. More generally,
for any M , one can define an operad FMM

n in topological spaces over M , built from
fiberwise configuration spaces. Even if M is not parallelizable, the collection FMM is
endowed by the structure of an operadic right module over FMM

n .
These various operadic structures on configuration spaces have received growing

interest over the decades. The configuration spaces of points on manifolds with their
operadic module structure have recently seen a surge in interest, due to their cen-
tral appearance in the Goodwillie-Weiss embedding calculus [7, 53] and factorization
homology [3]. These applications require understanding of the homotopy type of the
configuration spaces together with their natural operadic structures.

The first result in this direction was the rational formality of the little disks operads,
shown by Tamarkin [50] (for n = 2, over Q), Kontsevich [31] (for all n, over R), with
further contributions over the years [24, 36, 44, 20].

For closed connected orientable M , the real homotopy types of the configuration
spaces FMM together with the operadic structure have recently computed by three
of the authors [9, 29], where “workable” combinatorial models were given. This paper
is a follow-up to these works, extending the methods and generalizing the results to
compact orientable manifolds with boundary.

ASTÉRISQUE 449



SUMMARY OF RESULTS 3

Summary of results

Let M be a compact orientable manifold with non-empty boundary ∂M . We study
configuration spaces of r points in the interior and s points on the boundary:

Confr,s(M) = {(x1, . . . , xr, y1, . . . , ys)× (∂M)r × M̊s | xi ̸= xj , yi ̸= yj for i ̸= j}.
There are essentially two approaches to defining algebraic structures on those

spaces: one that has to do with the action of the Swiss-Cheese operad, and one that
has to do with how configuration spaces behave when one glues manifolds along their
boundaries. We will describe “graphical” models for both approaches. We will also
define “small” models for configurations on the interior of M together with its action
of the little disks operad.

Graphical models: Swiss-Cheese action. — We can compactify Confr,s(M) in the
spirit of Axelrod-Singer [2] to obtain a compact space SFMM (r, s), cf. Section 3 below.
These compactified spaces come with a natural operadic right action of the fiberwise
Swiss-Cheese operad SCM

n (and the S in SFM stands for “Swiss-Cheese”).
More concretely, in the second color, the fiberwise little disks operad FMM

n acts
on SFMM by insertion of configurations of points “infinitesimally close to” a given
point in the configuration. In the first color, we have a similar operation of insertion
of configurations of points on the upper half-space, fiberwise over ∂M . The operations
are depicted in the following illustration:

x

◦
TxM

7→

y ◦
TyM

7→

Our first main result is the construction of a CDGA model SGraphsA,A∂
for the right

SFMM
n -module SFMM , where (A,A∂) is a CDGA model for (M,∂M) (see Section 5.3

for what is precisely expected of (A,A∂)). The proof mostly follows analogous results
and constructions of Kontsevich, a strategy already used in previous works [9, 29].

Let us briefly describe this model. Elements of SGraphsA,A∂
(r, s) are directed graphs

with vertices of 4 kinds: aerial external vertices, numbered from 1, . . . , s, representing
the s points in the interior of M ; terrestrial external vertices, numbered 1, . . . , r,
representing the r points on the boundary; and internal “unidentifiable” vertices, either
aerial or terrestrial. In addition, aerial vertices may be decorated by elements of A,
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4 INTRODUCTION

and terrestrial vertices are decorated by elements of A∂ . Note also that edges may
not start at terrestrial vertices. For detailed construction and some more technical
conditions we refer the reader to Section 6.

2 a21a1

1 2

b2
b1

with ai ∈ A, bj ∈ A∂ .

We can define similarly a graphical model SGraphsA
n of the fiberwise Swiss-Cheese

operad, and there is a coaction of SGraphsA
n on GraphsA,A∂

by explicit combinatorial
formulas on graphs. Furthermore, all graphical models have a natural dg commutative
algebra structure, given by gluing diagrams at external vertices.

Our first main result is then that these graphical objects are indeed models for the
topological configuration spaces, in the sense that they are quasi-isomorphic to the
CDGAs of differential forms on those spaces:

Theorem A (See Theorem 6.23). — Let M be an oriented compact manifold with bound-
ary ∂M ̸= ∅. Then there is zigzag of quasi-isomorphisms relating the pairs

(SGraphsA,A∂
,SGraphsA

n ,GraphsA
n ) ≃ (ΩPA(SFMM ),ΩPA(SFMM

n ),ΩPA(FMM
n ))

compatible with all structures, i.e., with the dg commutative algebra structure and the
operadic action of the second member of the pairs on the first.

We note that the graded object SGraphsA,A∂
depends on M only through the

homotopy type of M , while that is certainly not true for the real homotopy type of the
configuration spaces. The dependence on M in GraphsM comes from the differential.
More concretely, the differential, and hence all dependence on M , is neatly encoded
by a Maurer-Cartan element ZM in a certain graph complex. Physically, this Maurer-
Cartan element corresponds to the partition function in the underlying topological
field theory, taking values in the complex of vacuum Feynman diagrams. In this paper
we will hence call this special MC element ZM that governs the real homotopy type
of our configuration spaces the “partition function,” although we will not discuss any
connections to physics.

The partition function can actually be evaluated under good conditions. In particu-
lar, if M and ∂M are simply connected, and dim(M) ≥ 5, then the partition function
only depends on the real homotopy type of M :

Corollary B (Corollary 6.29). — If M and ∂M are simply connected, and dim(M) ≥ 5

then the real homotopy type of SFMM (as space, and as right module under the
fiberwise Swiss-Cheese operad) only depends on the real homotopy type of the map
∂M →M .
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SUMMARY OF RESULTS 5

More concretely, the real homotopy type is precisely encoded in the tree piece of
the partition function. The above result hence means that there are no “quantum
corrections”.

Note that for dimM ≤ 4, using the (generalized) Poincaré conjecture (see Freed-
man [18] for n = 4 and Perelman [43, 42] for n = 3), if M and its boundary are
simply connected then M is homeomorphic to D3 or D4 (or, depending on conven-
tion,D0 if ∅ is considered simply connected). Therefore, in dimension ≤ 4, if (M,∂M)

and (M ′, ∂M ′) are homotopy equivalent, then they are homeomorphic. Since home-
omorphic spaces have homeomorphic configuration spaces, Corollary B thus holds
vacuously for the real homotopy type of the spaces SFMM , as there is at most one
possible manifold in each dimension to consider. However, the right action of the fiber-
wise Swiss-Cheese operad depends on tangent spaces, and thus the diffeomorphism
types of the manifold. In dimension ≤ 3, M must also be diffeomorphic to D3, so
Corollary B holds in full. The existence of exotic R4 prevents us from concluding in
dimension 4 and we do not know if there exists a counterexample to real homotopy
invariance in dimension 4.

Graphical models: gluing at the boundary. — There is an alternative viewpoint on
the configuration spaces of points on manifolds with boundary, that both gives rise to
simpler models, and to algebraic structure which is not easily extracted from (although
contained in) the Swiss-Cheese action above. Let us now only consider configuration
spaces

Confr(M) := Conf0,r(M)

of points in the interior, with no points on the boundary. Also consider the config-
uration space of points on ∂M × I, i.e., Confr′(∂M × I), where I = (0,+∞). The
collection of the latter spaces (for various r′) naturally forms an algebra object (more
precisely, an E1-algebra object), the product being the gluing of the intervals

7→

This E1-algebra naturally acts on ConfM (r) by gluing at the boundary:

7→

Understanding these gluing operations is of high importance, because they allow the
configuration space of points on a glued manifold X = M ⊔∂M N to be expressed
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6 INTRODUCTION

through the configuration spaces of the pieces, as a “derived tensor product”

Conf(X) ≃ Conf(M)⊗L
Conf(∂M×I) Conf(N).

We refer the reader to [3] for more explanations.
The algebraic operations above (of algebra and module, by gluing at the bound-

ary) are encoded in our models in the Swiss-Cheese action, but not in an accessible
form. We may however describe simpler models in this case that capture those gluing
operations more nicely. To this end it is also suitable to define slightly different com-
pactifications mFMM and aFM∂M (where “a” stands for “algebra” and “m” for module,
see Section 3.7). The algebra and module structures described above are defined on
the nose for these models of the configuration spaces.

In this setting we can construct significantly simpler combinatorial models for our
configuration spaces mGraphsA and aGraphsA∂

. Concretely, elements of mGraphsA(r)

are directed graphs with only two types of vertices, external vertices numbered 1 . . . , r,
and internal vertices. All vertices are decorated by an element on A.

1

c1c2

2

3

4
c3 with cj ∈ A.

The construction of aGraphsA∂
is similar.

All the algebraic operations may then be encoded combinatorially on these dia-
grams. Our second main result is then:

Theorem C (See Section 7). — For M a compact oriented manifold with boundary ∂M ,
we have a zig-zag of quasi-isomorphisms

(mGraphsA, aGraphsA∂
,GraphsA

n ) ≃ (ΩPA(mFMM ),ΩPA(aFM∂M ),ΩPA(FMM
n ))

respecting all algebraic structures, i.e., the CDGA structures, the operadic right ac-
tions, and the E1-algebra and module structure obtained by gluing at the boundary.

Again, the objects here depend on a certain Maurer-Cartan element in a graph
complex called the partition function. This partition function can can be evaluated
under good conditions, just like for SFMM . The conditions here are weaker than
those of Corollary B (see page 85), which can heuristically be explained because
the graph complex for SFMM depends on a model for Conf(∂M), which requires
dim ∂M ≥ 4 ⇐⇒ dimM ≥ 5.

Corollary D. — If M is simply connected, and dim(M) ≥ 4 then the real homotopy
type of mFMM (as space, and as right module over aFMN ) only depends on the real
homotopy type of the map ∂M →M .

In Section 8.4, we connect the two models SGraphsA,A∂
(0,−) (all the external

vertices are in the interior) and mGraphsA as comodules over GraphsA
n . The only

possible manifold in dimension ≤ 3 is D3 by the Poincaré conjecture, so the corollary
holds vacuously in low dimensions.
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SUMMARY OF RESULTS 7

Small models and coaction of the cohomology. — Under some hypotheses about
the connectivity and the dimension of M , we will also find some “small” models
for Confk(M), inspired by the Lambrechts-Stanley models for configuration spaces
of closed manifolds (see [29] and [9, Appendix A]).

Suppose both M and ∂M are simply connected and that dimM ≥ 7, so that
the pair (M,∂M) admits a Poincaré-Lefschetz duality model, a notion we define
in Section 2, and let P be the resulting model of M . We may then use the same
construction as in [29] to get a CDGA GP (k). If ∂M = ∅, then P is a Poincaré
duality model of M and we recover the Lambrechts-Stanley model of Confk(M). We
show in Theorem 8.9 that there is an isomorphism of graded vector spaces between
H∗(GP (k)) and H∗(Confk(M)) over Q, which generalizes the result of [35].

However, GP (k) is not a CDGA model of Confk(M) in general. Instead we consider
a “perturbed” version G̃P (k), which is isomorphic to GP (k) as a dg-module but not
as an algebra. We show that G̃P (k) is a CDGA model of Confk(M). Moreover, we
prove that G̃P is a right Hopf e∨n-comodule if ∂M ̸= ∅, and if M is framed then we
prove that the quasi-isomorphism G̃P ≃ Ω∗PA(SFMM (∅,−)) is compatible with the
comodule structures (over e∨n and Ω∗PA(FMn), respectively).

Theorem E (See Theorems 8.19–8.20). — Let M be a smooth, simply connected con-
nected compact n-manifold with simply connected boundary of dimension at least 5.
Assume that either M admits a surjective pretty model, or that n ≥ 7 so that M
admits a Poincaré-Lefschetz duality model. Let P be the model built either out of the
surjective pretty model or the Poincaré-Lefschetz duality model.

Then for all k ≥ 0, the CDGA G̃P (k) is weakly equivalent to Ω∗PA(SFMM (0, k)), and
the equivalence is compatible with the action of the symmetric group Σk; in particular,
it is a model of Confk(M). Moreover, if M is framed, then the right Hopf comodule
(G̃P , e

∨
n) is weakly equivalent to (Ω∗PA(SFMM (0,−)),Ω∗PA(FMn)).

The same result holds with P = H∗(M) for simply connected manifolds with simply
connected boundary satisfying dimM ∈ {4, 5, 6}.

The advantage of this small model is that it can be used to do some computations,
e.g., of factorization homology (see [29, Section 5]) or embedding calculus. Note that
despite the notation, G̃P depends not just on the model P of M but on the full
Poincaré-Lefschetz duality model of the pair (M,∂M).

Remark F. — All of our models are compatible with the symmetric group ac-
tions. Therefore, we obtain models of the unordered configuration spaces Bk(M) =

Confk(M)/Σk by considering the sub-CDGA of elements invariant under the sym-
metric group action. Note however that the unordered configuration spaces are not
simply connected even if M is (if dimM ≥ 3 and M is simply connected then
π1(Bk(M)) = Σk) so this may give less information than expected. This is still
sufficient to compute the cohomology, for example.
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8 INTRODUCTION

Outline

Closed mfd Swiss-Cheese E1-algebra E1-module

Compactif. local FMn §3.2 SFMn §3.5 n/a n/a

fibered FMM
n §3.3 SFMM

n §3.5 n/a n/a

global FMM §3.4 SFMM §3.6 aFM∂M & mFMM §3.7

Propagator local [31] [57] n/a n/a

fibered [8] §6.1 n/a n/a

global §4.1 §4.3 §4.4 §4.5

Model local Graphsn §5.1 SGraphsn §5.1 n/a n/a

fibered GraphsA
n §5.5 SGraphsA

n §6.1 n/a n/a

global GraphsA §5.3 SGraphsA,A∂
§6 aGraphsA∂

& mGraphsA §7.1

MC elements local µ ∈ GC∨n (5.2) c ∈ SGC∨n (5.7) n/a n/a

fibered z ∈ A ⊗̂GC∨n §5.6 z∂ ∈ A∂ ⊗̂ SGC∨n §6.1 n/a n/a

global Z ∈ GC∨A Z ∈ SGC∨A,A∂
§6.5 w ∈ aGC∨A∂

W ∈ mGC∨A §7.2

Section 1 : We recall some background on cooperads and comodules over them, operads over
spaces, the cohomology of compact manifolds with boundary, and pretty models.

Section 2 : We define Poincaré-Lefschetz duality models, a generalization of surjective pretty
models, and we prove that any simply connected manifold with simply connected
boundary of dimension at least 7 admits a Poincaré-Lefschetz duality model.

Section 3 : We recall and define various compactifications for configuration spaces of Eu-
clidean (half-)spaces and manifolds with and without boundary, inspired by the
Axelrod-Singer-Fulton-MacPherson compactifications.

Section 4 : We explain how to construct the “propagators” which will be used to define inte-
grals on these compactified configuration spaces, using the usual Feynman rules.

Section 5 : We recall the construction of models for configuration spaces of closed mani-
folds [9, 29] that we will generalized for compact manifolds with boundary. We also
explain in what sense the graphical models we build are “functorial,” which will be
used in the rest of the paper.

Section 6 : We build our first graphical model SGraphsA,A∂
, and we prove that it is a model

of Conf•,•(M) as an operadic module over the Swiss-Cheese operad.
Section 7 : We build our second graphical model, mGraphsA, and we prove that it is a model

of Conf0,•(M) as a module over the E1-algebra Conf∂M×R>0 .
Section 8 : We build a first small dg-module GP (k), and we prove that under some hypotheses,

it computes the Betti numbers of Confk(M). We then prove that a “perturbed” variant
G̃P (k) is a CDGA model for Confk(M) as a module over the cohomology e∨n of the
little n-disks operad. We also make precise the connection between SGraphsA,A∂

and
mGraphsA.

Appendix : We compute the cohomology of several graph complexes that appear throughout
the paper.
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