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Société Mathématique de France 2005
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ON SUMS OF SIXTEEN BIQUADRATES

Jean-Marc Deshouillers, Koichi Kawada, Trevor D. Wooley

Abstract. — By 1939 it was known that 13792 cannot be expressed as a sum of sixteen
biquadrates (folklore), that there exist infinitely many natural numbers which cannot
be written as sums of fifteen biquadrates (Kempner) and that every sufficiently large
integer is a sum of sixteen biquadrates (Davenport).
In this memoir it is shown that every integer larger than 10216 and not divisible by
16 can be represented as a sum of sixteen biquadrates. Combined with a numerical
study by Deshouillers, Hennecart and Landreau, this result implies that every integer
larger than 13792 is a sum of sixteen biquadrates.

Résumé (Sur les Sommes de Seize Bicarrés). — En 1939, on savait que 13792 ne peut
pas être représenté comme somme de seize bicarrés (folklore), qu’il existe une infinité
d’entiers qui ne peuvent pas être écrits comme sommes de quinze bicarrés (Kempner)
et que tout entier assez grand est somme de seize bicarrés (Davenport).
Dans ce mémoire, on montre que tout entier supérieur à 10216 et non divisible par
16 peut s’exprimer comme somme de seize bicarrés. Combiné à une étude numérique
menée par Deshouillers, Hennecart et Landreau, ce résultat implique que tout entier
supérieur à 13792 est somme de seize bicarrés.
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CHAPTER 1

INTRODUCTION

The investigation of sums of biquadrates occupies a distinguished position in ad-
ditive number theory, largely on account of the relative success with which the basic
problems of Waring-type have been addressed. Although progress on such problems
was dominated for the greater part of the 20th century by advances in technology
at the heart of the Hardy-Littlewood method, the older ideas involving the use of
polynomial identities have recently resurfaced in work of Kawada and Wooley [15],
though now interwoven with the analytic machinery of the circle method itself. The
primary goal of this paper is to apply this new circle of ideas to obtain an explicit
analysis of sums of sixteen biquadrates, and, moreover, one suitable for determining
the largest integer not represented in such a manner. A separate paper [12] reports
on computations of Deshouillers, Hennecart and Landreau which complement the
main conclusion of this memoir, and as will shortly become apparent, the union of
these results leads to the following definitive statement concerning sums of sixteen
biquadrates.

Theorem 1. — Every integer exceeding 13792 can be written as a sum of at most 16
biquadrates.

Although we avoid a detailed historical account of the various contributions to
Waring’s problem for biquadrates, our subsequent discussion will be clarified by a
sketchy overview of such matters (we refer the reader to the survey [11] for a more
comprehensive account). For the sake of concision, we refer to a number n as being
a Bs (number) when n can be written as a sum of at most s biquadrates. In accordance
with the familiar notation in Waring’s problem, we then denote by g(4) the least
integer s with the property that every natural number is a Bs, and we denote by G(4)
the least natural number s such that every sufficiently large number is a Bs. The
problem central to this paper has as its origin the assertion made by Waring in 1770
to the effect that g(4) = 19. This conjecture was in large part resolved by Hardy and



2 CHAPTER 1. INTRODUCTION

Littlewood [13], who established by means of their newly devised circle method that
G(4) ! 19. Indeed, the work of Hardy and Littlewood shows that one may compute
an explicit constant C with the property that every number exceeding C is a B19.
Although a computational check of the integers of size at most C would determine
whether or not g(4) is equal to 19, the astronomical size of this constant C entirely
precluded any such attempt to resolve this problem. While for other exponents k,
advances in the circle method rapidly wrought an effective determination of the value
of g(k), it was only in the late 1980’s that, with new ideas and substantial effort,
it became possible to reduce the value of C to a size within the grasp of existing
supercomputers. Thus Balasubramanian, Deshouillers and Dress at last announced
a proof of g(4) = 19 in [3], [4]. A complete proof of the result can be found in the
series of papers [7], [8], [9] and [10].

While it has only recently been established that every natural number is a B19,
as Waring had claimed, it has been known for many years that G(4) is less than 19.
Indeed, Davenport [5] had shown by 1939 that G(4) = 16, so that with only finitely
many exceptions, all natural numbers are B16. We recall at this point that the lower
bound G(4) " 16 is immediate from the observation that 31 · 16m is not a B15

for any non-negative integer m. As announced in [11], by combining the work of
Balasubramanian, Deshouillers and Dress with the central idea of the recent memoir
[15] of Kawada and Wooley, it is now possible to determine all numbers that are not
B16. The object of this treatise is the detailed proof of the following result.

Theorem 2. — Every integer exceeding 10216 that is not divisible by 16 can be written
as the sum of 16 biquadrates.

A companion paper of Deshouillers, Hennecart and Landreau [12] shows that all
natural numbers not exceeding 10245 are B16, with the exception of precisely 96
numbers, the largest of which is 13792. In view of the latter conclusion, Theorem 1
follows from Theorem 2 by noting that integers exceeding 10216 divisible by 16 are
harmless. For if N > 10216 and 16|N , then there exist natural numbers m and
n with the property that N = 16mn, and either n > 10216 and 16 ! n, or else
10216/16 < n ! 10216. In the former case, Theorem 2 shows that n is a B16, and in
the latter case the above cited conclusion of Deshouillers, Hennecart and Landreau
[12] shows that n is a B16. Thus, in either case, it is evident that N = (2m)4n is a
B16.

We remark that Deshouillers, Hennecart and Landreau [12] have determined in
addition the 31 numbers that are not B17 (the largest of which is 1248), and also
the 7 numbers that are not B18, these being simply described as the integers 80k − 1
for 1 ! k ! 7. We refer the reader to the aforementioned paper [12] for a complete
list of the exceptional numbers which are not B16, and those which are not B17 (this
information may also be found in the survey [11]).
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We next provide a brief overview of our basic strategy, deferring to section 2 a
more detailed discussion of our plan of attack on the proof of Theorem 2. We employ
the Hardy–Littlewood method, aiming to exploit the polynomial identity

x4 + y4 + (x + y)4 = 2(x2 + xy + y2)2 (1.1)

that was the key innovation of Kawada and Wooley [15]. In order to efficiently exploit
the relation (1.1), we introduce the set M, which we define by

M = {m ∈ N : m = x2 + xy + y2 for some x, y ∈ Z with xy(x + y) #= 0 }. (1.2)

In view of (1.1), for each m ∈ M one finds that 2m2 is a sum of 3 biquadrates. Thus
one is led to consider the number, Z(X), of solutions of the equation

2m2
1 + u4

1 + u4
2 = 2m2

2 + u4
3 + u4

4,

with m1, m2 ∈ M∩[1, X1/2] and 1 ! ui ! X1/4 (1 ! i ! 4). By employing a modified
divisor function estimate to determine the number of solutions of the latter equation
with u4

1 +u4
2 #= u4

3 +u4
4, and an immediate counting argument when u4

1 +u4
2 = u4

3 +u4
4,

one derives the efficient upper bound Z(X) % X(log X)ε without any undue effort
(see the proof of Theorem 1 in Kawada and Wooley [15, §2], and also the related
discussion of Lemma 3.4 of [15]).

In order to establish that a given large number N is a B16, the most obvious
strategy suggested by the above discussion is that of considering representations of N
in the form

N = 2m2
1 + 2m2

2 + x4
1 + · · · + x4

10, (1.3)

with m1, m2 ∈ M and xj ∈ N (1 ! j ! 10). It is now apparent that whenever
N admits a representation of the shape (1.3), then N may be written as the sum of
16 biquadrates. Unfortunately, since a biquadrate is congruent to 0 or 1 modulo 16
according to whether it is even or odd, one finds from (1.1) that whenever m ∈ M,
the expression 2m2 is necessarily congruent to 0 or 2 modulo 16. Thus, whereas
an unrestricted sum of three biquadrates is congruent to 0, 1, 2 or 3 modulo 16,
our surrogate 2m2 is restricted to the classes 0 and 2 modulo 16. It follows that
whether or not the integer N is a B16, it fails to possess a representation in the shape
(1.3) whenever N ≡ 15 (mod 16), and thus our initial strategy is doomed to failure.
Nonetheless, by making use of the tools developed within this memoir, the authors
have employed this approach to establish that whenever N " 10156, and N is not
congruent to 0 or 15 modulo 16, then N can be written in the shape (1.3), and hence
is a B16. We omit the details of such an argument in the interest of saving space.

As is apparent from the deliberations of the previous paragraph, one may recover
the missing congruence class 15 modulo 16 by considering instead representations of
N in the form

N = 2m2 + x4
1 + · · · + x4

13, (1.4)
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4 CHAPTER 1. INTRODUCTION

with m ∈ M and xj ∈ N (1 ! j ! 13). By combining the mean value estimate
discussed above with an explicit version of Hua’s inequality provided by Deshouillers
and Dress [9], a careful application of the Hardy-Littlewood method would establish
that whenever N " 10300 and 16 ! N , then N is a B16. Unfortunately, even anticipated
advances in computational technology would seem insufficient to permit the methods
of Deshouillers, Hennecart and Landreau [12] to check that all numbers not exceeding
10300 are B16, with the above-mentioned exceptions. We are therefore forced in our
proof of Theorem 2 to introduce a further new idea.

Motivated by the identity (1.1), and the similar identity

x2 + y2 + (x + y)2 = 2(x2 + xy + y2),

we obtain from the relation

(w + x)4 + (w − x)4 = 2w4 + 12w2x2 + 2x4

the new identity

(w + x)4 + (w − x)4+(w + y)4 + (w − y)4 + (w + x + y)4 + (w − x − y)4

= 4(x2 + xy + y2)2 + 24(x2 + xy + y2)w2 + 6w4

= 4(x2 + xy + y2 + 3w2)2 − 30w4.

(1.5)

The use of (1.1) in the representations (1.3) and (1.4) might reasonably be regarded
as effectively replacing three biquadrates by a square. The use of the identity (1.5),
meanwhile, effectively replaces six biquadrates by a square and a biquadrate, which
in applications amounts to trading five biquadrates for a square. While the latter
exchange is clearly less efficient than the former so far as consequent mean value esti-
mates are concerned (see Lemmata 2.4 and 2.5 below), in compensation one finds that
the six biquadrates on the left hand side of (1.5) may be simultaneously odd. More-
over, despite the relative inefficiency of the identity (1.5) as compared to (1.1), one
may nonetheless recover a mean value estimate associated with only 14 biquadrates
of essentially the same strength as that available from Hua’s inequality for 16 bi-
quadrates (compare Theorem 4 of Deshouillers and Dress [9] with Lemma 2.5 below).
Thus it transpires that the new identity (1.5) is crucial to the success of this paper.

In order to establish that a given large integer N is a B16, therefore, the strategy
which we adopt in this memoir is to consider representations of N in the form

N = 2m2
1 + 4m2

2 + 24m2w
2 + 6w4 + x4

1 + · · · + x4
7,

with m1, m2 ∈ M and w, xj ∈ N (1 ! j ! 7). In view of the identities (1.1) and (1.5),
it follows that whenever N can be written in the latter form, then N is necessarily
a sum of 16 biquadrates. A discussion of the details associated with putting this
strategy into practice may be found in §2 below, wherein an outline of the proof of
Theorem 2 is also provided.
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