

Numéro 125/126 Nouvelle série

CHAMPS DE HURWITZ

J. BERTIN & M. ROMAGNY

2 0 1 1

Comité de rédaction

Jean BARGE
Emmanuel BREUILLARD
Gérard BESSON
Antoine CHAMBERT-LOIR
Jean-François DAT

Charles FAVRE
Daniel HUYBRECHTS
Yves LE JAN
Laure SAINT-RAYMOND
Wilhem SCHLAG

Raphaël KRIKORIAN (dir.)

Diffusion

Maison de la SMF Case 916 - Luminy 13288 Marseille Cedex 9 France smf@smf.univ-mrs.fr Hindustan Book Agency O-131, The Shopping Mall Arjun Marg, DLF Phase 1 Gurgaon 122002, Haryana Inde

AMS
P.O. Box 6248
Providence RI 02940
USA
www.ams.org

Tarifs

 $Vente\ au\ num\'ero:50 \in (\$\,75)$

Abonnement Europe : $255 \in$, hors Europe : $290 \in (\$435)$ Des conditions spéciales sont accordées aux membres de la SMF.

Secrétariat : Nathalie Christiaën

Mémoires de la SMF Société Mathématique de France Institut Henri Poincaré, 11, rue Pierre et Marie Curie 75231 Paris Cedex 05, France

Tél: (33) 01 44 27 67 99 • Fax: (33) 01 40 46 90 96 revues@smf.ens.fr • http://smf.emath.fr/

© Société Mathématique de France 2011

Tous droits réservés (article L 122-4 du Code de la propriété intellectuelle). Toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'éditeur est illicite. Cette représentation ou reproduction par quelque procédé que ce soit constituerait une contrefaçon sanctionnée par les articles L 335-2 et suivants du CPI.

ISSN 0249-633-X ISBN 978-85629-333-1

Directrice de la publication : Aline BONAMI

MÉMOIRES DE LA SMF 125/126

CHAMPS DE HURWITZ

José Bertin Matthieu Romagny

J. Bertin

Institut Fourier, Université Grenoble 1, France.

 $E ext{-}mail: { t jose.bertin@ujf-grenoble.fr}$

M. Romagny

Institut de Mathématiques de Jussieu, Université Paris 6, France.

 $E ext{-}mail: romagny@math.jussieu.fr}$

Classification mathématique par sujets (2000). – 14H10, 14H30, 14H37, 14A20, 14C17; 11G20, 11G30, 14C40.

Mots-clefs. – Courbe algébrique, revêtement, revêtement galoisien, champ de Hurwitz, compactification, structure de niveau, Riemann-Hurwitz, revêtement cyclique, classes tautologiques.

Nous remercions les organisateurs de la semaine thématique Groupes de Galois arithmétiques et différentiels au CIRM (Luminy) en Mars 2004, durant laquelle plusieurs exposés furent consacrés aux espaces de Hurwitz, et qui a servi de point de départ à la présente rédaction. Même si la gestation de ce travail a été lente, et peut-être à cause de cela, nous avons bénéficié d'incitations et sollicitations répétées de nombreux collègues. Nous tenons à les remercier tous pour leur patience et leur bienveillance. Enfin, nous remercions les rapporteurs, dont les nombreuses remarques ont permis d'améliorer grandement la qualité de ce travail.

CHAMPS DE HURWITZ

José Bertin, Matthieu Romagny

Résumé. – Dans ce travail, nous effectuons une étude détaillée des champs de Hurwitz et de leurs espaces de modules, tant dans le cas galoisien que dans le cas non galoisien, avec une attention particulière portée aux correspondances entre ces espaces de modules. Nous comparons notre construction à celles proposées par Abramovich-Corti-Vistoli, Harris-Mumford, et Mochizuki-Wewers. Nous mettons en application nos résultats pour revisiter des exemples classiques, notamment les champs de courbes stables munies d'une structure de niveau arbitraire, et les champs de revêtements cycliques modérément ramifiés. Dans une deuxième partie, nous mettons en évidence des fibrés tautologiques et des classes de cohomologie qui vivent naturellement sur les champs de Hurwitz, et nous donnons des relations universelles, dont un analogue supérieur de la formule de Riemann-Hurwitz, entre ces classes. Nous donnons des applications au champ des revêtements cycliques de la droite projective, avec un intérêt particulier pour des relations du type de la relation de Cornalba-Harris et pour les intégrales de Hodge cycliques, notamment hyperelliptiques.

Abstract (Hurwitz stacks). — In this work, we give a thorough study of Hurwitz stacks and associated Hurwitz moduli spaces, both in the Galois and the non Galois case, with particular attention to correspondances between these moduli spaces. We compare our construction to those proposed by Abramovich-Corti-Vistoli, Harris-Mumford, and Mochizuki-Wewers. We apply our results to revisit some classical examples, particularly the stacks of stable curves equipped with an arbitrary level structure, and the stacks of tamely ramified cyclic covers. In a second part we exhibit some tautological bundles and cohomology classes naturally living on Hurwitz stacks, and give some universal relations, in particular a higher analogue of the Riemann-Hurwitz formula, between these classes. Applications are given to the stack of cyclic covers of the projective line, with special attention to Cornalba-Harris type relations and to cyclic, in particular hyperelliptic, Hodge integrals.

TABLE DES MATIÈRES

1.	Introduction	9
	Conventions et Notations	13
2.	Classification des revêtements	15
	2.1. Actions de groupes et revêtements	15
	2.1.1. Revêtements, G-courbes, G-revêtements	15
	2.1.2. Classification des revêtements	16
	2.2. Donnée de Hurwitz	18
	2.2.1. Donnée de Hurwitz : Définition	18
	2.2.2. Opérations sur les données de Hurwitz	19
	2.3. Nombre de Nielsen	
	2.3.1. Classification topologique	21
	2.3.2. Nombre de Nielsen	
3.	Familles de G-courbes lisses et Théorème de Chevalley-Weil	29
_	3.1. Géométrie du diviseur de branchement	
	3.1.1. Diviseurs de points fixes	
	3.1.2. Ramification et branchement	
	3.2. Inversion de la formule de Chevalley-Weil	
	3.2.1. Formule de Chevalley-Weil	
	3.2.2. Inversion des relations de Chevalley-Weil	
4.	Familles de G-courbes stables	41
	4.1. Actions stables, revêtements stables	
	4.1.1. Courbes stables et stables marquées	
	4.1.2. Actions stables	
	4.1.3. Collision des points de branchement : étude locale	
	4.1.4. Géométrie du quotient par une action stable	
	4.2. Collision des points de ramification	
	4.2.1. G -type d'un G -diviseur	
	4.2.2. Chevalley-Weil (bis repetita)	
	4.3. Courbes stables marquées et actions de groupes	
5.	Déformations des revêtements modérément ramifiés	61

	5.1. Déformations équivariantes des courbes	61
	5.1.1. La déformation universelle	61
	5.1.2. Stabilité de la courbe quotient	66
	5.1.3. Déformations équivariantes versus déformations du diviseur de	
	branchement	68
	5.2. Modèle stable marqué d'un G -revêtement	69
6.	Champs de Hurwitz	
	6.1. G-champs et champs quotients	
	6.1.1. Quotient d'un champ par une action de groupe	
	6.1.2. 2-quotient ou rigidification	80
	6.2. Champs de Hurwitz : cas galoisien	81
	6.2.1. Définition des champs de Hurwitz	81
	6.2.2. Fonctorialité des champs de Hurwitz	83
	6.3. Compactification stable du champ de Hurwitz (I)	84
	6.4. Compactification du schéma de Hurwitz : Gieseker-Mumford	86
	6.5. Compactification stable du champ de Hurwitz (II)	88
	6.5.1. Le champ de Hurwitz versus Harris-Mumford	88
	6.5.2. Le revêtement « universel »	
	6.6. Champs de Hurwitz : cas non galoisien	
	6.6.1. Revêtements admissibles	
	6.6.2. Clôture galoisienne : cas des courbes lisses	
	6.6.3. Clôture galoisienne : courbes stables	
	6.6.4. Le morphisme discriminant : cas général	
	· · · · · · · · · · · · · · · · · · ·	
7.	Graphes et revêtements	107
	7.1. Graphes modulaires de Hurwitz	107
	7.2. Graphes de groupes et revêtements de graphes	109
	7.2.1. Graphes modulaires quotients	109
	7.2.2. Un exemple : le bord du schéma de Hurwitz « classique »	113
	7.2.3. Revêtements ramifiés de graphes	116
	7.3. Groupe de Picard et revêtements	118
	7.3.1. Sous-groupes de décomposition et d'inertie	118
	7.3.2. Faisceaux sans torsion de rang 1 et revêtements stables	121
	7.4. Stratification canonique du bord	125
	7.4.1. Stratification du bord	125
	7.4.2. Type topologique d'un point du bord	
8.	Structures de niveau sur les courbes stables	
	8.1. Structures de niveau sur les courbes lisses	
	8.2. Structures de niveau sur les courbes stables	136
	8.3. Le niveau abélien (n)	
	8.3.1. Groupes de décomposition et d'inertie	139
	8.3.2. Composantes irréductibles du bord	141

9. Revêtements cycliques	. 149
9.1. Revêtements cycliques versus racines d'un faisceau inversible	. 149
9.1.1. Racines et quasi-racines d'un faisceau inversible	. 149
9.1.2. Description des revêtements cycliques	
9.2. Revêtements cycliques stables	. 153
9.2.1. Revêtements cycliques stables et quasi-racines d'un faisceau	
inversible	. 153
9.2.2. Composantes irréductibles du bord	
9.3. Revêtements cycliques de \mathbb{P}^1	. 159
9.3.1. Quelques calculs de torseurs	
9.3.2. Interlude : Géométrie du discriminant des formes binaires	
9.3.3. Le champ des revêtements cycliques de la droite projective	. 166
10. Classes tautologiques	. 169
10.1. Fibré de Hodge	. 169
10.1.1. G-fibrés vectoriels sur le champ de Hurwitz	. 169
10.1.2. Décomposition du fibré de Hodge	. 172
10.2. Les fibrés en droites $\psi_{i,\chi}$ et $\mu_{i,v}$. 176
10.3. Relations de Riemann-Hurwitz d'ordre supérieur	. 178
10.3.1. Calculs dans l'anneau de Chow	. 178
10.3.2. Relations de Riemann-Hurwitz d'ordre supérieur	. 181
10.3.3. Faisceaux inversibles associés aux composantes du bord	. 184
10.4. Appliquer le théorème de Riemann-Roch	. 188
10.4.1. Mise en place du théorème de Grothendieck-Riemann-Roch (GRR)	188
10.4.2. Termes de bord	. 192
10.5. La relation de Cornalba-Harris revisitée	. 201
10.5.1. Les faisceaux inversibles ψ et μ dans le cas cyclique	. 201
10.5.2. Relation de Cornalba-Harris	. 202
10.5.3. Intégrales de Hodge-Hurwitz hyperelliptiques	. 206
Index	. 211
Bibliographie	. 213