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INTRODUCTION

Let X be a compact Riemann surface. A real structure of X is an antianalytic
involution τ : X → X . We will also say that τ is a symmetry of X . The surface X
is said to be symmetric if it admits some real structure τ . A real form of X is the
conjugacy class of a real structure with respect to the group Aut±X of all analytic
and antianalytic automorphisms of X .

The origin of these names comes from the uniformization theorem of Koebe and
Poincaré, since it implies that each compact Riemann surface is conformally equiv-
alent to an irreducible smooth complex algebraic curve. Let F1, . . . , Fm be a set of
polynomials defining such a curve X . If each Fi turns out to have real coefficients
then the complex conjugation determines an antianalytic involution τ on X . Thus, X
is symmetric and τ is a real structure of X . A pair (X, τ) consisting of an irreducible
smooth complex algebraic curve X and an antianalytic involution τ on it, is called a
real algebraic curve. The complex curve X is said to be its complexification.

Most complex algebraic curves have no real form and others have more than one.
For example, let X be the elliptic curve defined by

X = {[x0 : x1 : x2] ∈ P
2(C) : x0x

2
2 = x1(x2

1 + x2
0)}.

Clearly, the restriction τ to X of the complex conjugation on P2 is a real structure of
X . Also ϕ ◦ τ is a real structure of X , where ϕ is the birational automorphism of X
given by

ϕ : [x0 : x1 : x2] #−→ [x0 : −x1 : ix2], where i =
√
−1.

It is easy to see that the fixed point set Fix(τ) of τ has one connected component
whilst Fix(ϕ ◦ τ) has two; hence τ and ϕ ◦ τ are non-conjugate real structures of X
and so (X, τ) and (X,ϕ ◦ τ) are non-isomorphic real algebraic curves with the same
complexification.

Along this memoir the terms “compact Riemann surface” and “complex algebraic
curve” will be used indistinctly.

Let k ! 0 be the number of connected components of Fix(τ) and let ε be the
separability character of τ defined as ε = −1 if X − Fix(τ) is connected and ε = 1
otherwise. Note that we do not exclude the possibility of Fix(τ) to be empty. The
parameters k and ε classify τ topologically. Clearly a conjugate in Aut±X of τ is
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also a symmetry with the same topological type; that is, k and ε just depend on the
conjugacy class of τ . So we define the species sp(τ) of the real form represented by τ
to be the integer εk. The symmetry type of X is the (finite) set of species of all real
forms of X .

The computation of the symmetry type of a hyperelliptic Riemann surface is a
classic problem, posed by Felix Klein in 1893 and solved by himself in the case
|Aut±X | = 4. Partial solutions have appeared since, as in the cases of low genus
or special families of Riemann surfaces (see below). These solutions are immediate
consequence of the results in this memoir since here we completely solve this problem.
Namely, we compute the symmetry types of all compact hyperelliptic Riemann surfaces
of genus g ! 2.

We also obtain, for each g ! 2, the list of groups which act as the full group of an-
alytic and antianalytic automorphisms of a genus g symmetric hyperelliptic Riemann
surface. This extends the results of Brandt and Stichtenoth in [4] and Bujalance,
Gamboa and Gromadzki in [15].

The uniformization theorem makes the theory of Fuchsian groups a fruitfull tech-
nique to deal with compact Riemann surfaces. However, there is an increasing interest
in describing them via defining equations. In this memoir we compute explicit poly-
nomial equations of each symmetric hyperelliptic Riemann surface. The formula of a
representative of each real form is also given.

The most elementary case for computing symmetry types is that of algebraic curves
of genus zero. The Riemann sphere Ĉ = C ∪ {∞} admits exactly two real forms,
namely those represented by the symmetries

τ1 : z #−→ z and τ2 : z #−→ −1
z

.

The first fixes the real axis, which disconnects Ĉ, while the second is fixed-point
free. Therefore, the symmetry type of Ĉ is {1, 0}. The case of curves of genus one was
completely solved by Alling [1]. Elliptic curves are tori, and each torus is isomorphic to
the quotient Xγ = C/Lγ where Lγ = Z+γ Z and γ ∈ P = {γ ∈ C : |γ| ! 1, |Re(γ)| "
1/2}. The symmetric tori correspond to the points of P on the imaginary axis or on
the boundary of P . For γ = i, the symmetry type of Xγ is {−1, 0, 2}. If Re(γ) = 0
and Im(γ) > 1 then the symmetry type of Xγ is {0, 0, 2, 2}, and the symmetry type
of the other symmetric tori is {−1,−1}.

Among the pioneers in the study of real forms of a complex algebraic curve, Har-
nack [32], Weichold [52] and Klein [35] stand out. The first two determined the
admissible values of the species of the real forms of a curve of genus g. As said
above, Klein obtained the first result concerning the symmetry types of curves of
genus g ! 2. More precisely, he proved that the symmetry type of a hyperelliptic
curve of genus g ! 2 whose group of automorphisms has order 4 is one of the fol-
lowing: {−1,−1}, {−2,−2}, . . . , {−g,−g}, {g + 1, g + 1} or {0, 1} if g is even, and
{−1,−1}, {−2,−2}, . . . , {−g,−g}, {g + 1, g + 1}, {0, 2} or {0, 0} if g is odd.
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After these pioneer works, interest was lost in studying real forms of algebraic
curves until the seventies, with the foundational research of Alling and Greenleaf
[2], Earle [24] and Gross and Harris [31]. Moreover, the development of proper
techniques of the real algebraic geometry, see for example the book of Bochnak, Coste
and Roy [3], has propelled ahead this new field of research. Alling and Greenleaf
studied systematically Klein surfaces, mainly compact ones, which may be seen as
quotient spaces X/〈τ〉 where τ is a real structure of the compact Riemann surface X .
With the obvious definition, conjugate real structures give rise to isomorphic Klein
surfaces. They showed that the categories of compact Klein surfaces and real algebraic
curves are equivalent. Earle introduced the moduli of compact Riemann surfaces with
symmetries, while Gross and Harris showed, among other things, that the invariants
k and ε of a symmetry are determined by the first homology group H1(X, Z2), and
conversely. They also described the topology of hyperelliptic real algebraic curves.

Related to the problem of existence of symmetries in a Riemann surface, we men-
tion here the work of Singerman [48]. He obtained conditions for a Riemann surface
with large automorphism group to be symmetric. For example, he showed that all
Riemann surfaces admitting automorphisms of order greater than 2g + 2 are sym-
metric. However, he also exhibited an example of a Riemann surface having Hurwitz
automorphism group which is not symmetric. (A Riemann surface of genus g ! 2
has Hurwitz automorphism group if it admits the maximum number 84(g − 1) of
automorphisms that a genus g Riemann surface may admit.)

In the same line of Klein’s results quoted above, Bujalance and Singerman [18]
calculated the 18 symmetry types of symmetric Riemann surfaces of genus 2. Since all
such surfaces are hyperelliptic, these symmetry types appear naturally in this memoir.
They showed, for example, that such a surface always admits a real form with non-
zero species. They also characterized, in terms of the full group of automorphisms, the
surfaces admitting a unique real form. Explicit polynomial equations for these surfaces
and their real forms have been calculated by Cirre in [21], where the same description
has also been done for the family of curves admitting the maximum number of real
forms with non-zero species. More recently, Melekoğlu in [39] has calculated the
symmetry types of curves of genus 3.

It is worthwhile mentioning other results in the same line. For example, Natanzon
obtained in [41], [42] and [43] the symmetry types of those algebraic curves of genus g
admitting a real form of species g +1 or −g. Using combinatorial methods, Bujalance
and Costa in [9] also studied the symmetries of these curves. In [12] Bujalance, Costa
and Gamboa calculated the symmetry types of the algebraic curves whose group of
analytic automorphisms has prime order. This extends Klein’s results quoted above.
Bujalance and Costa [10] found the symmetry type {−2, 0} of the famous Macbeath’s
curve of genus 7. It must be pointed out that the aid of the symbolic language
CAYLEY has been very useful to compute finite generating sets and conjugacy classes
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of some groups, and also to decide the separability character of some symmetries.
More recently, Broughton, Bujalance, Costa, Gamboa and Gromadzki in [5] and [6]
obtained the symmetry types of those curves on which PSL(2, q) acts as a Hurwitz
automorphism group, and of the Accola-Maclachlan and Kulkarni curves, respectively.

All these last results were obtained by the combinatorial methods to be explained
below. By using purely algebraic arguments, Turbek [51] calculated the symmetry
type of the so called Kulkarni curve. It should be remarked that only this last paper,
[6] and [21] provide explicit formulae for the symmetries representing the real forms.

Sometimes it is helpful to know, before computing the symmetry type of an alge-
braic curve, the number of their real forms. To that end, some upper bounds have
been obtained in the last twenty years. Natanzon [44], using topological methods,
proved that an algebraic curve of genus g has at most 2(√g +1) real forms of nonzero
species. He also showed that this bound is attained for infinitely many values of g,
those of the form g = (2n − 1)2. Later on, Bujalance, Gromadzki and Singerman [17]
obtained a combinatorial proof of this result and proved that these are the only values
of g for which the bound is sharp. This has been considerably improved recently by
Bujalance, Gromadzki and Izquierdo [16]. If g = 1 + 2r−1u with u odd, then every
algebraic curve of genus g has at most 2r+1 real forms with nonzero species. In partic-
ular, it follows a striking corollary which was first proved by Gromadzki and Izquierdo
[30]: each algebraic curve of even genus has at most 4 real forms with nonzero species.
A bound for the number of real forms with zero species will appear in the paper [8]
by Bujalance, Conder, Gamboa, Gromadzki and Izquierdo.

Also related with this subject we mention here the papers by Natanzon [45], Singer-
man [50] and Gromadzki [28], [29], where they get upper bounds for the sum of the
number of connected components of the real structures of an algebraic curve. In
particular the hyperelliptic case is treated.

Other results concerning topological properties of symmetries of Riemann surfaces
have been obtained by Bujalance, Costa, Natanzon and Singerman in [13], Bujalance
and Costa in [11] and Izquierdo and Singerman in [34].

Closely connected with the study of symmetries of hyperelliptic algebraic curves is
that of the so called pseudo-symmetries due to Singerman [49]. Each symmetry τ of
the hyperelliptic curve X induces a symmetry τ̂ of the Riemann sphere Ĉ. However
the converse is not always true: some symmetries τ̂ of Ĉ admit liftings τ : X → X of
order 4. They are called pseudo-symmetries and will appear in a natural way in our
work.

Computational aspects in the theory of Riemann surfaces are an increasing subject
of research. One of the main goals is to pass explicitly between defining equations,
Fuchsian groups and period matrices. This is the classical uniformization problem.
Among the recent results in this direction, we mention here the paper by Gianni,
Seppälä, Silhol and Trager [26] where they have designed an algorithm to compute a
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