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THE WAVE DIFFRACTED BY A WEDGE WITH
MIXED BOUNDARY CONDITIONS

Olivier Lafitte

Abstract. — We study the diffraction of a conormal wave by a curved wedge in R?,
each face + or — of the wedge being characterized by a mixed boundary condition
of impedance type d,u + z*(x)0;u = 0. We reduce the problem to a system on the
two traces of the diffracted wave on each face of the wedge. The principal matricial
symbol of this system is the matrix of the “straightened” system obtained with the
tangent diedra and with the boundary condition d,u + 2*(0)0;u = 0.

Résumé (L’ onde diffusée par une aréte avec conditions au bord mixtes)

Nous étudions la diffusion d'une onde conormale analytique par une aréte (ou un
diédre) a faces courbes, muni de conditions de type impédance sur chaque face, de la
forme 9,u + 2 (x)dyu = 0. Nous ramenons ce probléme & I'étude du systéme sur les
traces et les dérivées normales sur chaque face. Ce systéme a pour terme principal le
systéme obtenu en remplagant chaque face par la face tangente et les conditions au
bord par d,u+ 27 (0)9;u = 0 et nous montrons que le systéme principal est inversible.
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CHAPTER 0

INTRODUCTION

0.1. Statement of the problem

Let F = {(x,y) € R?, 2 > 0,b(z) < y < a(z)} be a wedge in R?, the curves
y = a(z) and y = b(x) are called in this paper the faces of the wedge. We assume
a(0) =b(0) =0, a(z) > 0> b(x) for x > 0:

B @)
YN {t=—1}
' Ay ={y=a()}
F
A ={y=0b(x)}

F1GURE 0.1. Wedge F, incident wave front set ¥;

The space domain is O :~R2 — F. We denote the faces of the wedge by Ay
and A_. With the notation Ay = {(z,y,t), y = a(z),t € R,z € R} and A_ =

{(z,y,t), y =0b(z), t € R, x € R}, we verify that AL = Ay N{x > 0}. The functions



2 CHAPTER 0. INTRODUCTION

a and b are assumed to be analytic functions on R. We define the exterior domain
1 = O x Ry. It will be convenient to consider that 00 = 90, U9O_ U {(0,0)}. In
all the sequel, p will denote the projection from R? x R; to R2.

The problem of diffraction by a wedge with Dirichlet or Neumann boundary con-
ditions has been studied by other authors before (starting with Poincaré [34], [35]
and Sommerfeld [40], then Garnir [19], Bernard [3], [5], [7], [8], Kaminetzki-Keller
(23], Bouche-Molinet [9], [30], Cessenat [12], Assous-Ciarlet [1]). However, these au-
thors considered a wedge with straight faces or a wedge whose faces are circular arcs
(Bernard [5]). The generalization to a curved wedge with analytic faces was done for
a Dirichlet boundary condition by Gérard and Lebeau [20]. Other authors studied
related problems: Kondrat’ev [24] considered more general boundary conditions and
a cone, as well as Eskin [17, 18] or Bernard [7]. Grisvard [21], Azaiez-Dauge [2],
Assous-Ciarlet-Sonnendrucker [1] studied elliptic problems outside polyhedra.

The results of Gérard and Lebeau were used by Burq [11] to obtain a control result
with open sets with corners. A generalization of the propagation result to a wedge in
R? is due to Lebeau [29)].

We generalize in this paper the results of [20] for more general boundary conditions.
We assume that each face of the wedge is characterized by an impedance boundary
condition, that we describe below by equation (6).

Let us consider an incident wave u;(x,y,t) € H{(R? x R;), solution of the wave
equation (A — 92 )u;(z,y,t) = 0. We assume that u; is conormal analytic to a surface
¥; such that ;N {t < 0} C Q, ;N {t =0} NI = {(0,0,0)} and wu,(x,y, —9)
is supported on the side of p(¥; N {t = —§}) C R? which does not contain F (see
Figure 0.1). The wave u; is the generalization of a plane wave)). This wave can be
written, in a neighborhood of t =z =y =10

1 [T
(1) uz(x7yat) = %/ ezw(t—ei(z,y))ai(x’y,w) dw + a(x,y,t)

where the function a is analytic in the neighborhood of (0,0,0) and 6;(0,0) = 0,
V0;(0,0) = (1,0). The symbol o; is analytic and satisfies

— 00

+oo
(2) sup/ (1 + |71®)|ei(z, y, T —is)|> dT < +oo0.

s20 J —oco

Let us define the impedance boundary conditions. For this purpose, we define,
when they exist, the two traces d4 and 0_, which are the normal derivatives on each
face of the wedge (unlike in [20], where the normalization coefficient was not present):

{ 01 f(2) = (1+ (a'(2))*) 720y f — ' ()02 f)|y—a(w)=o+

3
@) O f(x) = (1+ (¥'(2)*) /2 (¥ (@)0af = 0y f)ly—b()=0--

(D For example, when o4(z,y,w) = (1 + |w|)~3 and 0;(z,y) = x, u; is (up to a regularization) the
inverse Fourier transform of what is called a plane wave propagating in the z direction.
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