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SCHRÖDINGER EQUATIONS

Jean-Marc Delort
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Publié avec le concours du Centre National de la Recherche Scientifique



2000Mathematics Subject Classification. —
Key words and phrases. —



Abstract. — Q1, Q2 u
(i∂t +∆)u = Q1(u,∇xu) + Q2(u,∇xu)

Q1 Q2 u

u L∞

Résumé (Solutions globales pour des perturbations nonlinéaires à longue portée de
l’équation de Schrödinger en dimension 2)

Q1, Q2 u
2 (i∂t+∆)u = Q1(u,∇xu)+Q2(u,∇xu)

Q1 Q2 u

u
L∞ t → +∞

©





CONTENTS

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1. The nonlinear Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1. Statement of main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2. First reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Linear estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1. Symbolic calculus and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2. Spaces of distributions and linear inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Nonlinear estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1. Estimates for products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2. Conjugation by an oscillatory exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4. Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1. Main reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2. Existence of the global solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93





INTRODUCTION

This paper is devoted to the proof of existence of global solutions for a nonlinear
Schrödinger equation in two space dimension with small Cauchy data. Consider the
equation

(i∂t +∆)u = F (u,∇xu, u,∇xu)

u|t=0 = εu0

where t ∈ R, x ∈ Rd, F is a polynomial vanishing at least at order 2 at 0 and ε > 0.
The problem of local existence for the above equation with a general nonlinearity

and for small Cauchy data (i.e. small ε) in a convenient Sobolev space has been solved
by Kenig, Ponce and Vega [19]. Hayashi and Ozawa [18] obtained local existence in
one space dimension for large Cauchy data. The case of any space dimension was
treated by Chihara [4]. More recently, Kenig, Ponce and Vega [20] proved the similar
result for a generalized Schrödinger equation, i.e. an equation in which ∆ is replaced
by a more general operator.

We are interested in this paper in global solutions for small enough ε. When the
space dimension is larger or equal to 3, and F vanishes at least at order 3 at 0,
Chihara [5], [6] proved that there is a global solution if the data are small enough in
a (weighted) Sobolev space. He also proved the same result in two space dimensions
under a convenient restriction on the cubic part of the nonlinearity.

For quadratic nonlinearities, and space dimension larger or equal to three, global
existence for small data has been obtained under convenient assumptions on the non-
linearity. The most recent results are due to Hayashi and Hirata [10], Hayashi and
Kato [11], Hayashi, Miao and Naumkin [12]. We refer the reader to the introduction
of [15] for a detailed discussion of these results as well as further references.

The results we have mentioned so far could be qualified of “short range” type
ones. By this, we mean the following: the nonlinearity F can be written as a sum
of products of a nonlinear potential V (u,∇xu, u,∇xu) times u or ∇xu or u or ∇xu.
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Denote by k ! 1 the order of vanishing of V at the origin. Since linear solutions of the
Schrödinger operator decay in L∞ like t−d/2 when t → +∞, we see that V computed
on such a solution decays like t−kd/2 when t → +∞. We say that F is a short range
perturbation of the linear Schrödinger equation if this quantity is integrable when
t → +∞ i.e. if kd/2 > 1. All the results we have indicated above fall into this
category.

We are interested in this paper in the long range case, more precisely in the limiting
case kd/2 = 1. There are only two such possibilities: either the space dimension d
is 1 and F is cubic, or d = 2 and F is quadratic. The former case has been solved
in general by Hayashi and Naumkin [14]: they found a sufficient condition on the
cubic nonlinearity under which solutions are global for small enough Cauchy data in
a weighted Sobolev space. Their method relies on the use of the smoothing property
of Doi [9]. They could also in [17] reduce a particular quadratic nonlinearity to a
cubic one, thus obtaining global existence in this case as well.

The case of quadratic nonlinearities in two space dimensions is studied by Cohn [7]
for a very specific nonlinearity, and by Hayashi and Naumkin [15], [16] in the special
case of real analytic Cauchy data. Such an assumption allows one to avoid the difficulty
of the loss of one derivative in the right hand side of the equation.

Our aim in this paper is to study this quadratic two dimensional problem when the
Cauchy datum lies in a weighted Sobolev space. We are thus obliged to cope with the
problem of recovering the derivative lost in the right hand side. We state our main
theorem of global existence in the first chapter, together with precise assumption on
the quadratic nonlinearity we consider. Let us just describe here our general strategy
in the special case

(Dt + D2
x)u = u(Dx1u)

where Dt = 1
i ∂t, Dxj = 1

i ∂xj , j = 1, 2, and where the datum is given at t = 1, the
solution being looked for on {t ! 1}. We first take new coordinates T = t, X = x/t

and look for u in terms of a new unknown w(T, X) through u(t, x) = 1
t e

ix2/4tw(t, x/t).
We get for w an equation of form

(0.1)
(

DT +
D2

X

T 2

)
w =

1
T

eiθ(T,X)w

(
DX1

T
+

X1

2

)
w

where θ = TX2/4. Let us take a simplified model forgetting the X1/2 term above:

(0.2)
(

DT +
D2

X

T 2

)
w =

1
T

eiθ(T,X)w

(
DX1

T
w

)
.

Remark that DXj is the translation in the new coordinates of the operator tDxj−xj/2,
which is of constant use in the study of global problems for nonlinear Schrödinger
equations with small Cauchy data. Consequently, smoothness relatively to DX will
play an essential role. The form of the right hand side of (0.2) shows immediately what
are the difficulties we will encounter. First of all, we have a loss of a DX/T derivative
in the nonlinearity. To remove this problem, we shall use the Kato local smoothing
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property in the version due to Kenig, Ponce and Vega [20], adapted to our long time
framework. Secondly, the right hand side of the equation contains the oscillating
factor eiθ, which cannot have any DX-smoothness uniformly as time T → +∞. To
treat these oscillating contributions, we introduce spaces of the following type

(0.3) {v ∈ L2; (DX/
√

T )s(DX/T )s′
v ∈ L2}

where s and s′ are integers. The smoothness relatively to DX/T corresponds to what
is gained by the local smoothing property – and to what is lost in the nonlinearity
w

DX1
T w. The smoothness relatively to DX/

√
T should be understood as a weak

version of smoothness relatively to tDx − x/2 for u(t, x). This type of derivative
is natural for the problem because of the form of θ(T, X) = (

√
TX)2/4. To study

products of elements in (0.3), we will need to have s and s′ large enough. There will be
no problem to ensure that for s′, but as DX√

T
eiθ =

√
TX
2 eiθ we cannot expect the right

hand side of (0.2) to be in a space of type (0.3) with a positive s. Consequently, instead
of trying to find directly w in a space of type (0.3), we shall look for w as an expansion
w = v+V1(v)eiθ where v and V1(v) will be essentially in a space (0.3) with large enough
s, s′, and where V1(v) will moreover decay like (

√
T |X |)−2 when

√
T |X | → +∞. When

plugging such an expression in eiθ(T,X)w(DX1
T w), one gets a first contribution of form

eiθ(T,X)v(DX1
T v), and remainders decaying like 〈

√
TX〉−2. One will choose V1(v) as

a function of v such that (DT + D2
X

T 2 )(V1eiθ) equals 1
T v(DX1

T v)eiθ modulo remainders.
This is possible because θ is a non characteristic phase for the operator DT + D2

X
T 2 . In

that way, one gets an equation

(0.4)
(

DT +
D2

X

T 2

)
v =

1
T

R

where R will be a combination of terms eimθ with coefficients decaying at least like
〈
√

TX〉−2. Since 〈
√

TX〉−2eimθ has some smoothness relatively to DX/
√

T uniformly
in T (actually, this expression accepts two DX/

√
T derivatives), this shows that we

have gained some smoothness in comparison with the right hand side of (0.2). Actually
one has to repeat such a method once again, to reduce the equation to (0.4) with a
right hand side R = R(v, DX

T v) with values in a space of type (0.3) with s ∼ 4.
This last equation can then be solved globally using the local smoothing property as
mentioned before.

Our paper is organized as follows. In the first chapter, we state our main theorem
and perform first reductions. The second chapter is devoted to the proof of the local
smoothing inequality that will be essential in the rest of the article. We make use of
Littlewood-Paley decompositions to define convenient Sobolev spaces, and to prove
the smoothing inequality as a consequence of propagation of singularities. Section 3 is
devoted to nonlinear estimates. We make extensive use of the ideas of paradifferential
calculus of Bony [1] to study nonlinear operators acting on the Sobolev spaces defined
in chapter 2. We also prove results concerning products or conjugation of an element
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of such a Sobolev space with an oscillatory exponential. Section 4 gives the proof
of the theorem. We perform the method of elimination of oscillatory exponentials
outlined above. The main tool is again paradifferential calculus, which allows us to
decompose the right hand side of the equation as a sum of a nice term, and of a really
oscillating contribution, that we eliminate using the non charactericity of the phase.
Since the true equation is (0.1) rather than (0.2), we use weighted versions of the
Sobolev spaces defined in chapter 2 to treat the contribution coming from X in the
right hand side of (0.1). When all oscillatory contributions have been cancelled, the
proof of the theorem, as well as the description of the asymptotics of the solution,
follow from standard arguments.

MÉMOIRES DE LA SMF 91


