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INTRODUCTION

In this text we investigate the spectral properties of Laplace operators defined on
hierarchical lattices based on finitely ramified self-similar sets, and their continuous
analogs. The basic example is the lattice based on the Sierpinski gasket. These
operators have much to do with the operators considered in the context of Schrödinger
operators with random or quasi-periodic potential. Here, the disorder is not in the
potential but in the lattice itself. It is well-known that in the context of Schrödinger
operators on the line the spectral properties are intimately related to the dynamics of
the propagator of the underlying differential equation (cf. for example [8], [33]). In
comparison, in our models we will show that the characteristics of the spectrum of
our operator are related to the dynamics of the iterates of a certain renormalization
map that we explicitly define and that appears to be a rational self-map of a compact
complex manifold.

The interest in such lattices and in their spectral properties comes from physicists
(cf. [35], [34], [1] and [4]) because they present interesting computable models, with
peculiar properties. In [35], [34], on the particular lattice based on the Sierpinski
gasket, Rammal and Toulouse discovered interesting relations between the spectrum
of the discrete Laplace operator and the dynamics of the iteration of some rational
map on C. More precisely, they exhibited a polynomial map on C that relates the
spectrum of the operator on successive scales: they remarked that if λ is an eigenvalue
at level n + 1 then λ(5 − λ) is an eigenvalue at level n. Traditionally, this law was
called the spectral decimation of the Sierpinski gasket, i.e. this terminology reflects
the existence of a 1-dimensional map that relates the spectrum of the operator on
successive scales. Starting from this, Rammal ([34]) gave a fairly complete description
of the spectrum of the discrete operator on this lattice. In particular, he computed
explicitly the eigenvalues and showed the existence of the so-called molecular states
(that we call Neumann-Dirichlet eigenfunctions in this text) which are eigenfunctions
with compact support. This was made rigorous and generalized to the continuous
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operator defined on the Sierpinski gasket itself by Fukushima and Shima (cf. [19]).
The spectral type of the operator on the Sierpinski lattice, has been analyzed by
Teplyaev, cf. [49].

In general, the spectral decimation that works for the Sierpinski gasket is not valid,
and the question of generalizing the initial work of Rammal remained unsolved. In
[20] a class of lattices for which the spectral decimation works is exhibited. In [38],
for the particular example of a Sturm-Liouville operator defined on R, the author
made explicit some relations between the spectral properties of the operator and the
properties of the dynamics of the iterates of a rational map; this map is no longer
1-dimensional but is defined on the 2-dimensional projective space.

This text aims at a generalization of these previous works. Besides the interest of
the generalization, this brings new understanding of the models. In particular, the
renormalization map involved is now multidimensional and certain notions which are
specific to the dynamics in higher dimension and which were hidden in the case of
the Sierpinski gasket (where the renormalization map involved was 1-dimensional),
such as the notion of indeterminacy points (which corresponds to the singularities
of the map), the degree of the iterates, enter the discussion and play an important
role. In comparison with our previous work, [38], the main progress that allows us
to handle the general case is the construction of a new renormalization map. This
renormalization map is a rational map defined on some compact Kähler manifold. It
is of the type of the maps considered in [13], [12], and our techniques rely heavily
on recent works of Fornaess Sibony, Diller Favre, Guedj (cf. [45], [16], [13], [12],
[14]) on the dynamics of rational maps in higher dimensions. It is interesting to note
that many of the key notions in this field (such as the degrees of the iterates, the
indeterminacy points, the Green current) find a significance related to the spectral
properties of our operators. In particular, we are able to give an explicit expression
for the density of states in terms of the Green current of the map and we prove that
the molecular states of Rammal (called Neumann-Dirichlet eigenvalues in the text)
correspond exactly to the indeterminacy points of the map.

Since the text is long, we first describe the model and our results on the par-
ticular example of the lattice associated with the Sierpinski gasket. Let F ⊂ C,

F = {0, 1, 1
2 + i

√
3

2 }, be the vertices of a unit triangle, and Ψ1, Ψ2, Ψ3 be the three

homotheties with ratio 1
2 and centers the points 0, 1, 1

2 + i
√

3
2 , respectively. It is well-

known that there exists a unique proper subset X of C self-similar with respect to
Ψ1, Ψ2, Ψ3, i.e. such that X = ∪3

i=1Ψi(X), and that it is the celebrated Sierpinski
gasket, represented on Figure 1.

Fix now a sequence ω ∈ {1, 2, 3}N, called the blow-up, and define X⟨0⟩ = X and

X⟨n⟩ = Ψ−1
w1

◦ · · · ◦ Ψ−1
wn

(X).

It is clear that X⟨n⟩ is an increasing sequence of sets and that X⟨n+1⟩ is a scaled
copy of X that contains X⟨n⟩ as one of the three subcells; more precisely, we have
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Figure 1

X⟨n⟩ = Ψ−1
ω1

◦ · · · ◦ Ψ−1
ωn+1

(Ψωn+1(X)), which is clearly a subset of X⟨n+1⟩. Remark
that the position of the cell X⟨p⟩ in X⟨n⟩ for n > p depends on the blow-up ω. We
then set

X⟨∞⟩ = ∪∞
n=0X⟨n⟩.

We define the boundary of X⟨n⟩ by ∂X⟨0⟩ = F and

∂X⟨n⟩ = Ψ−1
w1

◦ · · · ◦ Ψ−1
wn

(F ).

There is a natural discrete sequence of lattices associated with this structure. The
lattice at level 0 is F⟨0⟩ = F , the vertices of the unit triangle in X⟨0⟩. The lattice at
level n, is the set of vertices of the unit triangles in X⟨n⟩. More precisely,

F⟨n⟩ = Ψ−1
ω1

◦ · · · ◦ Ψ−1
ωn

(∪j1,...,jnΨj1 ◦ · · · ◦ Ψjn(F )).

The position of F⟨0⟩ in the lattice at level n depends on ω, and we represent on figure 2
the lattice at level 4, F4. The bolded small triangle is the set F⟨0⟩ for the blow-up
starting from (ω1, . . . , ω4) = (1, 1, 1, 1) on the left and (1, 3, 1, 2) on the right. The
sequence F⟨n⟩ is increasing and we set

F⟨∞⟩ = ∪∞
n=0F⟨n⟩,

and ∂F⟨n⟩ = ∂X⟨n⟩.
It is important to realize that the infinite lattices F⟨∞⟩ obtained from different

blow-ups ω and ω′ are a priori not isomorphic (except when ω and ω′ are equal
after a certain level). To understand this, one can compare the constant blow-up
(1, . . . , 1, . . . ) with a non-stationary blow-up: the first one contains a point with only
2 neighbors (which is the point 0, center of the homothety Ψ1), on the second one all
points have 4 neighbors (indeed, the boundary points ∂F⟨n⟩ are sent to infinity when
n goes to infinity).
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Figure 2

The aim of this text is to investigate the spectral properties of some natural Laplace
operator defined either on the infinite lattice F⟨∞⟩ or on the unbounded set X⟨∞⟩.
The class of lattices or self-similar sets we consider is issued from the class of finitely-
ramified self-similar sets (also called p.c.f. self-similar sets in [25]) described in section
1.1, and is much larger than the Sierpinski gasket. Although the classical examples
have a natural geometrical embedding, these sets are defined abstractly from a very
simple finite structure: one starts from a finite set F and one constructs F⟨1⟩ as the
union of N copies of F , glued together according to a prescribed rule (represented
by an equivalence relation R on {1, . . . , N} × F ), then F⟨2⟩ is defined as the union
of N copies of F⟨1⟩ glued together according to the same rule, and so on. From this
discrete structure, one can construct an increasing sequence of sets F⟨n⟩, and also a
self-similar set X (cf. section 1.2 for precise definitions).

To take into account the eventual symmetries of the picture, we fix a group of
symmetries acting on each F⟨n⟩ (but in general not on F⟨∞⟩). For the Sierpinski
gasket we can see that the group G ∼ S3 (S3 denotes the group of permutation of F )
of isometries of the regular triangle ∂F⟨n⟩ leaves globally invariant the lattice F⟨n⟩.
We fix this group G as the group of symmetries of the structure (i.e. this means that
we will only consider G-invariant objects).

Note that for consistency with the notations of the main text, we denote by N the
number of subcells of F⟨1⟩. Here, we have N = 3.

We now define the type of operators we will consider in this text. We restrict to the
discrete setting in this introduction and we present the definitions only in the case of
the Sierpinski gasket. On F⟨n⟩ we define the difference operator A⟨n⟩ as the operator
on RF⟨n⟩ defined by

(1) A⟨n⟩f(x) = −
∑

y∼x

(f(y) − f(x)), ∀ f ∈ R
F⟨n⟩ ,
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