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RIEMANN–ROCH POLYNOMIALS OF THE KNOWN
HYPERKÄHLER MANIFOLDS

by Ángel David Ríos Ortiz

With an Appendix by Yalong Cao and Chen Jiang

Abstract. — We compute explicit formulas for the Euler characteristic of line bun-
dles in the two exceptional examples of Hyperkähler Manifolds introduced by O’Grady.
In an Appendix, Chen Jiang and Yalong Cao use our formulas to compute the Chern
numbers of the example of O’Grady in dimension 10.

Résumé (Polynômes de Riemann-Roch pour les variétés hyperkählériennes connues).
— Nous calculons des formules explicites pour la caractéristique d’Euler de fibrés en
droites pour les deux exemples exceptionnels de variétés hyperkählériennes introduits
par O’Grady. Dans un appendice, Chen Jiang et Yalong Cao utilisent nos formules
pour calculer le nombre de Chern de l’exemple d’O’Grady en dimension 10.
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170 Á. D. RÍOS ORTIZ

1. Introduction

A compact Kähler manifold is called hyperkähler (HK) if it is simply con-
nected and carries a holomorphic symplectic form that spans H2,0. HK mani-
folds can be thought of as the higher-dimensional analogues of K3 surfaces, and
they constitute one of the three fundamental classes of varieties with vanishing
first Chern class [1].

Although any twoK3 surfaces are deformation equivalent, this fact no longer
holds in higher dimensions. The first two series of examples of deformation
types in each (necessarily even) dimension were described by Beauville [1]: the
first series, denoted by K3[n], is given by the Hilbert scheme of n points in a
K3 surface. The other one is a submanifold in the Hilbert scheme of n points
in an abelian surface. Generalizing the construction of a Kummer surface, this
(2n-dimensional) deformation type is denoted by Kumn.

Later, O’Grady introduced two new deformation types in dimensions 6 and
10 ([24],[25]), now denoted by OG6 and OG10, respectively. The construction
of both exceptional examples is done by resolving a singular moduli space of
sheaves on a K3 surface for OG10 and an abelian surface for OG6. In view of
these analogies, it is expected that the projective geometry of HK manifolds of
K3[5]-type (respectively Kum3-type) should be related with that of OG10-type
(respectively OG6-type).

The main result of this paper (cf. Theorem 2.6) gives, for the HK manifolds
described by O’Grady, closed formulas that compute the Euler characteristic
of any line bundle in terms of numerical polynomials that only depend on the
Beauville–Bogomolov form—a canonical quadratic form in the second coho-
mology group of any HK. Surprisingly the formulas turn out to be exactly the
same as those of the series described by Beauville.

In order to compute these polynomials we use two different methods. The
first one exploits a recent description in [15] of OG10 as a compactification of a
fibration associated with a cubic 4-fold. The second one is based on the explicit
descriptions of some uniruled divisors in two different models of OG6 given in
[17] and [21].

Observe that in [3], the authors give a closed formula for the Riemann–Roch
polynomial of OG6 in terms of the so-called λ-invariant; in our work the closed
formula is obtained directly.

Finally, we would like to point out the very recent paper [14], where Chen
Jiang proves the positivity of the coefficients of the Riemann–Roch polynomial
for HK manifolds in general.

2. Preliminaries

Let X be an HK manifold of dimension 2n and qX its Beauville–Bogomolov
form [1]. Recall that the Fujiki constant cX is defined as the rational number
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such that for all α ∈ H2(X) we have the so-called Fujiki relation:∫
X

α2n = cXqX(α)n(1)

Remark. — The polarized form of Fujiki’s relation is

∫
X

α1 ^ · · ·^ α2n = cX
(2n)!

∑
σ∈S2n

qX(ασ(1), ασ(2)) · · · qX(ασ(2n−1), ασ(2n))

(2)

Huybrechts further generalized this relation to all polynomials in the Chern
classes, more specifically, he proved the following:

Theorem 2.1 ([9], Corollary 23.17). — Assume α ∈ H4j(X,Q) is of type
(2k, 2k) for all small deformations of X. Then there exists a constant C(α) ∈ Q
such that ∫

X

α ^ β2n−2k = C(α) · qX(β)n−k(3)

for all β ∈ H2(X,Q).

Remark. — If we set α = 1 in Theorem 2.1 we obtain the Fujiki relation (1)
and also that an = cX .

The odd Chern classes (hence the odd Todd classes) of X vanish since the
symplectic form on X induces an isomorphism between TX and its dual. The
Todd classes are topological invariants of X, so for any line bundle L in X, we
combine Theorem 2.1 with Hirzebruch–Riemann–Roch theorem to get

χ(X,L) =
n∑
i=0

1
(2i)!

∫
X

Td2n−2i(X) ^ c1(L)2i =
n∑
i=0

ai
(2i)! · qX(L)i(4)

where ai := C(Td2n−2i(X)).

Definition 2.2 (Huybrechts, Nieper–Wißkirchen, Riess). — The Riemann–
Roch polynomial of X, denoted by RRX(t), is the polynomial

RRX(t) =
n∑
i=0

ai
(2i)! t

i.

Let us list a few well-known properties of this polynomial.

Lemma 2.3. — Let X be an HK variety of dimension 2n. The following prop-
erties hold:

1. RRX depends only on the deformation class of X.
2. The constant term is a0 = n+ 1.
3. The coefficient of the highest-order term is an = cX and is positive.
4. The coefficient an−1 is positive.
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172 Á. D. RÍOS ORTIZ

Proof. — We have already observed that the Todd classes are a deformation
invariant of X. Hence, each ai (and therefore RRX) is also a deformation
invariant of X. The constant term of RRX is the holomorphic Euler character-
istic of X, this was computed [1] to be n + 1. The constant an = C(Td0(X))
is given by (1) so it is equal to cX . Observe that cX is positive because the
left-hand side of the Fujiki relation (1) is a volume form.

By the first item we can assume X to be projective. Nieper [22] computed∫
X

c2(X) ^ c1(L)2n−2 =
(

2n− 2
n− 1

)(∫
X

c2(X)(σσ)n−1
)
· qX(L)n−1.

The second Todd class of X is a positive multiple of c2(X), and if L is an
ample line bundle, then qX(L) > 0. Therefore, an−1 is positive if and only if∫
X
c2(X)(σσ)n−1 is positive. Fixing an HK metric compatible with the sym-

plectic structure, the last quantity is a positive multiple of the L2-norm of the
Riemann curvature tensor (see [22]), hence positive. �

In view of the previous Lemma, we can speak of the Riemann–Roch polyno-
mial for a deformation type. This has been done for the two series of examples
introduced by Beauville.

Example 2.4 ([7], Lemma 5.1). — Let X be an HK of K3[n]-type, then the
Riemann–Roch polynomial is given by

RRX(t) =
(
t/2 + n+ 1

n

)
.

Example 2.5 ([22], Lemma 5.2). — Let X be an HK of Kumn-type, then the
Hilbert polynomial takes the form

RRX(t) = (n+ 1)
(
t/2 + n

n

)
.

We will say that the Riemann–Roch polynomial is of K3[n]-type or Kumn-
type if it corresponds to one of the two examples above. Now we can state
precisely the main result of this section.

Theorem 2.6. — The Riemann–Roch polynomials for the deformation class
of OG6 and OG10 are of Kum3-type and K3[5]-type, respectively.

The theorem will be proved in Propositions 4.2 and 5.5 below.

3. Abelian fibered CY varieties

Let π : X → B be a flat surjective morphism with connected fibers between
projective normal complex varieties. Denote byXb the schematic fiber of b ∈ B.
For the rest of this section, we assume that
• X has rational singularities and ωX is trivial.
• every smooth fiber Xb is an abelian variety.
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Denote by OB(1) an ample line bundle on B and let F = π∗(OB(1)) be the
pullback. Let L be a π-ample line bundle on X. Whenever Xb is smooth, the
restriction Lb := L|Xb

defines a polarization of the abelian variety Xb.
Recall that to any polarization on an abelian variety, one can associate a

tuple of positive integers (d1, . . . , dn) which is called the polarization type,
see [12], in the following way: Since Xb is an abelian variety, we have an
identification H2(Xb,Z) ∼=

∧2
H1(Xb,Z)∨, hence we can interpret Lb as an

alternating integral form on the lattice H1(Xb,Z). Therefore, we can find a
basis of H1(Xb,Z) for which Lb has the form(

0 D
−D 0

)
where D = diag(d1, . . . , dn) is an integral diagonal matrix with di > 0 and
di|di+1. We will denote by (d1, . . . , dn) the type of Lb. Since the morphism is
flat, the type remains constant on the smooth locus of π. The following is a
generalization of [29, Claim 12]:

Theorem 3.1. — Let L be a π-ample line bundle on X and let (d1, . . . , dn)
be the type of Lb for a smooth fiber Xb. Then for any m ∈ Z, the sheaf
π∗(L⊗F⊗m) is locally free of rank d1 · · ·dn and all higher direct images vanish.
Moreover,

hp(Xb, (L⊗ F⊗m)|Xb
) =

{
d1 · · · dn p = 0,
0 p > 0.

Proof. — Let k > 0 be an integer such that M = L ⊗ F⊗k is ample. Let Xb

be a smooth fiber, and denote by Mb the restriction of M . Then

hp(Xb,Mb) = hp(Xb, Lb) =
{
d1 · · · dn p = 0,
0 p > 0.

Therefore, the higher direct image sheaves Rpπ∗M are torsion for p > 0. Let
ε : X̃ → X be a resolution of singularities of X. Since X has rational singu-
larities, ε∗(ωX̃) = ωX = OX and Rqε∗ωX̃ = 0 for every q > 0. Therefore, the
Grothendieck spectral sequence

Rpπ∗(Rqε∗ωX̃ ⊗M) =⇒ Rp+q(ε ◦ π)∗(ωX̃ ⊗ ε
∗M)

degenerates and so Rp(ε ◦ π)∗(ωX̃ ⊗ ε
∗M) ∼= Rpπ∗(M). On the other hand,

the divisor ε∗(M) is big and nef, so Theorem 2.2. in [10] states that Rp(ε ◦
π)∗(ωX̃ ⊗ ε

∗M) is torsion free for p ≥ 0. We conclude that Rpπ∗(M) must
vanish for p > 0.

Theorem 12.11 of [11] states that if Hp(Xb,Mb) vanishes for all b ∈ B, then
the natural map

Rp−1π∗M ⊗Ob
k(b)→ Hp−1(Xb,Mb)
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