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CONVEX COMPACT SURFACES WITH NO BOUND ON THEIR
SYNTHETIC RICCI CURVATURE

by Constantin Vernicos

Abstract. — Using refraction in the setting of normed vector spaces allows us to
present an example of a convex compact surface which admits no lower bound on its
Ricci curvature as defined by Lott–Villani and Sturm.

Résumé (Surfaces convexes et compactes n’admettant pas de borne de leur courbure de
Ricci synthétiques). — L’utilisation de la notion de réfraction dans le cadre des espaces
vectoriels normés permet de construite un exemple de surface convexe et compacte qui
n’est pas de courbure de Ricci minorée telle que défini par Lott-Villani et Sturm.

Introduction and statement of results

Many notions of curvature bounds adapted to a metric measure space have
been defined to extend the ones existing in Riemannian geometry. Most of
them heavily rely on comparison to the Euclidean space and that is why they
are quite restrictive. For instance, a normed vector space is CAT(0) if and only
if it is an Euclidean space; as a consequence, the only Finsler spaces which can
be CAT(0) are Riemannian (see also [2]). The same thing happens with the
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186 C. VERNICOS

Alexandroff spaces. It is even more general in that case, for an Alexandroff
metric space happens to be almost Riemannian manifold (see [1] for a precise
statement).

Some older notions, such as the Busemann convexity, are less restrictive.
However, they might not pass to the Gromov–Hausdorff limit of a sequence
of metric measured spaces; for instance, this happens when one approximates
a non-strictly convex norm by strictly convex ones. The family of strictly
convex normed spaces obtained are Busemann convex and converge to the
non-strictly convex ones which are not. In the light of the current interest in
understanding the limit spaces arising as limits of Riemannian metric space,
with Ricci curvature bounded from below, for instance, this is a huge flaw.

Following the work of Lott & Villani [6] and Sturm [15, 16], a new family
of notions of curvature bounded spaces arose. They involve the convexity of
an operator on the L2-Wasserstein space, which is a metrization of the space
of probability measures with finite 2-th moment. Among them one finds the
spaces satisfying the curvature dimension condition CD(K,N) or the measure
contraction propertyMCP (K,N). The latter may be seen as a measure analog
to the Busemann convexity, the former as a generalization of having Ricci
curvature bounded from below by K and being of dimension less than N . We
will refer to this last notion as synthetic Ricci curvature and describe such
spaces as admitting a lower bound on their synthetic Ricci curvature. An
example is given by a normed vector space of dimension n which satisfies the
curvature dimension condition CD(0, n) (see [17] in the Appendix).

Another point of view on curvature in metric spaces is based on analyt-
ical inequalities. For instance, Cordero-Erausquin, McCann, and Schmuck-
enschläger [3] looked at the Brascamp–Lieb inequality which is a generaliza-
tion of the Prekopa–Leindler inequality that can be used to prove the Brunn–
Minkoswki inequality in the Euclidean space.

The interesting aspect on which this paper is based is that most notions of
curvature deriving from the work of Lott–Villani and Sturm imply a Brunn–
Minkowski inequality, hence our focus on this inequality (see also [8, 9] for
a recent study on the relation between the Brunn–Minkowski and the CD
condition).

Our main result is the following:

Theorem 1. — There exists a compact C1,1 convex surface in R3 with the
norm ‖(x, y, z)‖ =

√
x2 + y2+|z| which admits no lower bounds on its synthetic

Ricci curvature.

The idea of that example came from the study of reflections and refraction in
normed (not necessarily reflexive) vector spaces. Section 2 focuses on a specific
example which allows us to obtain our convex set in Section 3.
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It is worth mentioning here that the specific example of Section 2 also shows
that the CD property is not preserved by gluing two CD spaces along their
isometric boundaries. This behavior distinguishes the CD property from other
properties, such as Alexandroff spaces (see [13, 5]).

The main reason why the example in Section 2 is not a CD space is due to
the particular structure of geodesics which branch along a hyperplane. It is
known that such branching does not go along with the CD property unless one
has a particular measure and metric structure (see [7], pointed out to us by an
anonymous referee as this paper was not available when the present work was
done).

Section 3 is a perturbation of Section 2’s example which smooths the space
a bit and probably gets rid of the branching, but without allowing a synthetic
curvature lower bound. One must also emphasize here that if the smoothing
were C2 then a lower bound would exist. Hence the nonexistence is not an
immediate thing.

1. Definitions and notations

A metric measured space (X, d, µ) is a space X endowed with a distance d
and a measure µ, usually a Borel one. Let us fix a metric measured space. For
any pairs of point m0, m1 ∈ X, we call ms ∈ X an s-intermediate point from
m0 to m1 if and only if

d(m0,ms) = sd(m0,m1) and d(ms,m1) = (1− s)d(m0,m1).

Let K0 and K1 be two compact sets in X, the set of s-intermediate points
from points of K0 to points of K1 will be denoted by

Ms(K0,K1).

If Ms(K0,K1) is not measurable, we will still denote its outer measure by

µ
(
Ms(K0,K1)

)
.

Let us first start with the classical Brunn–Minkowski inequality:

Definition 1.1 (Classical Brunn–Minkowski inequality). — Let N be greater
than 1. We say that the Brunn–Minkowski inequality BM(0, N) holds in the
metric measured space (X, d, µ) if for every pair of compact sets K0 and K1,
the following inequality is satisfied:

µ1/N(Ms(K0,K1)
)
≥ (1− s)µ1/N (K0) + sµ1/N (K1).(1)

We also say that BM(0,+∞) holds if and only if

µ
(
Ms(K0,K1)

)
≥ µ1−s(K0)µs(K1).(2)
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Remark 1.2. — Notice that if for some n ∈ R∗, and t,a and b ∈ R, the
inequality t ≥ (sa1/n + (1 − s)b1/n)n holds, then from the concavity of the
logarithm we have

ln t ≥ n ln
(
sa1/n + (1− s)b1/n)

≥ s ln a+ (1− s) ln b.

Hence, any BM(0, N) implies BM(0,∞).

Now the general Brunn–Minkowski inequality BM(K,N) requires the intro-
duction of a family of functions depending on K, N , and s ∈ [0, 1] denoted by
τ

(s)
K,N : R+ → R+. For a fixed s ∈ [0, 1] and θ ∈ R+, τ (s)

K,N (θ) is continuous, non-
increasing in N , and nondecreasing in K. Its exact definition is not important
for our applications, refer to [16].

Definition 1.3 (Generalized Brunn–Minkowski inequality). — Let N be
greater than 1 and K ∈ R. We say that the Brunn–Minkowski inequality
BM(K,N) holds in the metric measured space (X, d, µ) if for every pair of
compact set K0 and K1, the following inequality is satisfied:

µ1/N(Ms(K0,K1)
)
≥ τ (1−s)

K,N (ϑ)µ1/N (K0) + τ
(s)
K,N (ϑ)µ1/N (K1).(3)

where ϑ is the minimal (respectively maximal) length of a geodesic between a
point in K0 and a point in K1 if K ≥ 0 (respectively K < 0).

We can also define the BM(K,+∞) as follows:

µ
(
Ms(K0,K1)

)
≥ µ1−s(K0)µs(K1)eKs(1−s)ϑ2/2.(4)

The curvature dimension property, denoted by CD(K,N), is a generalization
of the following sentence on metric measures spaces:

The space has dimension less than N and the Ricci curvature is
bigger than K.

It is defined in terms of a convexity property of the entropy along geodesics
in the space of probability of the metric space (see [16] for more precise state-
ments).

For our purpose we only need to know the following properties of a space
satisfying a curvature dimension property (see K.T. Sturm [16]).

Property 1.4. — Let (X, d, µ) be a metric measured space, K ∈ R. The
following implications are valid:

1. Suppose CD(K,N) holds. If K ′ ≤ K, then CD(K ′, N) holds as well.
If N ′ > N , then CD(K,N ′) holds as well.

2. Suppose CD(K,N) holds. Then for any α, β > 0, the metric measured
space (X,αd, βµ) satisfies the CD(K/α2, N) condition.
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3. CD(0, N) implies BM(0, N) and, more generally, CD(K,N) implies
BM(K,N).

4. CD(K,N) implies the Bishop–Gromov volume growth inequality with
the Riemannian space of constant curvature K and dimension N .

2. Brunn–Minkowski inequality is not preserved in a two-layer Banach space

In this section we are going to consider the vector space R2 and the hy-
perplane H = {(x, y) ∈ R2 | y = 0}. We are going to put the classical Eu-
clidean `2 norm ‖(x, y)‖2 =

√
x2 + y2 on the half-space y > 0 and the `1 norm

‖(x, y)‖1 = |x|+ |y| on the half-space y < 0. Given P = (x, y) and Q = (x′, y′)
in R2 we define the distance d2,1 by

if y > 0, y′ > 0 d2,1(P,Q) = ‖P −Q‖2

if y < 0, y′ < 0 d2,1(P,Q) = ‖P −Q‖1

if y > 0 and y′ < 0 d2,1(P,Q) = infZ∈H ‖Z − P‖2 + ‖Q− Z‖1

This is actually the length distance when curves on the upper half-plane are
measured thanks to their Euclidean length, and on the lower half-plane thanks
to their `1-length. It is important here that the restriction of both norms
coincides on the hyperplane H.

Now let us specify the measures m we will use here. In Finsler geometry
there is no canonical measure as in Riemannian geometry. One has to choose
a consistent normalization of the Lebesgue measure on each tangent space (see
[1]). One possibility is to fix the volume of each tangent ball equal to π,
this gives the so-called Busemann volume. In our case, if we denote by λ the
standard Lebesgue measure, that is such that π is the measure of the standard
Euclidean disk, then on the lower half-space our measure would be αλ with
α = π/2. Other normalization exists (see again [1]).

We shall denote by
(
R2, d2,1,m

)
the metric measured space obtained this

way.

Properties 2.1. — Let α ∈ R and X0 = (ρ, θ) be in the upper half-plane in
polar coordinates centered at the point Oα = (α, 0). Consider X1 = (α, y) be
in the lower half-plane in Cartesian coordinates (y < 0), then
• the geodesic joining X0 to X1 is composed of the line segment from X0
to the point Oα and from the point Oα to X1. It is unique;
• the distance between X0 to X1 is equal to ρ− y;
• let Xs be the s-intermediate point between X0 to X1,

1. if s(ρ− y) < ρ, then Xs belongs to the upper half-plane and lies on
the affine segment from X0 to the point Oα, and Xs =

(
(1− s)ρ+

sy, θ
)
in polar coordinates;
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