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FROM ATTRACTION THEORY TO EXISTENCE PROOFS:

THE EVOLUTION OF POTENTIAL-THEORETIC METHODS

IN THE STUDY OF BOUNDARY-VALUE PROBLEMS, 1860–1890

Thomas ARCHIBALD (*)

ABSTRACT. — This paper examines developments in the study of boundary-value
problems between about 1860 and 1890, in the context of the general evolution of this
theory from the physical models in which the subject has its roots to a free-standing
part of pure mathematics. The physically-motivated work of Carl Neumann and his
method of the arithmetic mean appear as an initial phase in this development, one
which employs physical models as an integral part of its reasoning and which concen-
trates on geometrical hypotheses concerning the regions under study. The alternating
method of Hermann Amandus Schwarz, roughly contemporary to that of Neumann,
exhibits more strongly the analytic influence of Weierstrass. Both methods form the
essential background to Émile Picard’s method of successive approximations, developed
by him following a reading of both men’s work. Picard’s work, analytically rigorous and
remote from physical argument, marks both a transition of the subject matter from
applied to pure mathematics, and the full comprehension and mastery of Weierstrassian
methods in the French context.

RÉSUMÉ. — DE LA THÉORIE DE L’ATTRACTION AUX THÉORÈMES D’EXIS-

TENCE : L’ÉVOLUTION DES MÉTHODES DE LA THÉORIE DU POTENTIEL DANS

L’ÉTUDE DES PROBLÈMES AUX LIMITES, 1860–1890. Cet article analyse les contri-
butions à l’étude des problèmes aux limites, au cours des années 1860–1890, dans le con-
texte de l’évolution générale de la théorie qui, partant des modèles physiques où la ques-
tion trouve ses racines, se constitue en domaine autonome relevant des mathématiques
pures. Les travaux de Carl Neumann inspirés par la physique et sa méthode de la
moyenne apparaissent comme la phase initiale de cette évolution, celle qui emploie
des modèles physiques comme partie intégrante des raisonnements et qui se centre sur
les hypothèses géométriques relatives aux régions considérées. Le procédé alterné dû à
Hermann Amandus Schwarz, méthode à peu près contemporaine, porte nettement la
marque de l’analyse weierstrassienne. Ces deux méthodes constituent pour l’essentiel
le fonds où s’inscrira la méthode des approximations successives d’Émile Picard, que
celui-ci a développée à la suite de la lecture des travaux des deux auteurs précédents.
Les recherches de Picard, analytiquement rigoureuses et éloignées des argumentations
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physiques, marquent à la fois le passage du domaine des mathématiques appliquées à
celui des mathématiques pures et l’avènement de la pleine compréhension et mâıtrise
des méthodes de Weierstrass en France.

1. INTRODUCTION

On July 6, 1937, Émile Picard was awarded the Prix Mittag-Leffler at

the Institut de France. The prize was awarded by the Institut Mittag-

Leffler for “les découvertes qui constituent une source nouvelle et impor-

tante de progrès futurs pour les Sciences mathématiques”, and consisted

of a gold medal with the portrait of the winner, a diploma, and a person-

alized set of Acta mathematica. At the ceremony, Picard recounted the

fame of Karl Weierstrass and his Swedish disciple Gösta Mittag-Leffler in

the Paris of the mid-1880s:

“Il arriva même que dans une de ces cérémonies, dites les Ombres, où

les Polytechniciens font d’innocentes plaisanteries sur leurs professeurs,

on annonça la découverte d’un nouveau verset de la Genèse, où il était

écrit: ‘Dieu créa Weierstrass, puis, ne trouvant pas bon que Weierstrass

fût seul, il créa Mittag-Leffler’” [Picard 1938, pp. xxiii–xxiv].

The joke shows a widespread appreciation of the importance of Weier-

strassian analysis in the French mathematics of the time, particularly

those aspects of it most closely associated with the name of Mittag-Leffler:

the theory of functions of a complex variable and its applications to other

areas of analysis. Of course, France could lay claim to much of this theory

thanks to the foundational work of Cauchy. Its later elaborations in Ger-

many, due to Riemann and Weierstrass among others, had become known

to the French mathematical community largely through the intermedi-

ary of Hermite, who lectured on these matters to Picard among others.

In the next generation, Picard himself was instrumental in introducing

these German techniques to French mathematicians and students, and so

was an important figure in the development of an international style of

mathematics from a congeries of distinct national schools. The require-

ments of Weierstrassian rigour, particularly in analysis, were instrumen-

tal in this transition. Originally conceived as a language of justification,

Weierstrass’s analysis soon revealed itself to be a powerful tool for dis-

covery as well; and this feature in part accounts for its success among his
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students and adherents, as well as for its spread to mathematical com-

munities outside Germany. In that context, it was natural that existence

and uniqueness theory for partial differential equations should assume a

front-line position.

Until the mid-nineteenth century, partial differential equations were

not studied in a unified fashion, and there were few general results which

could be considered to unify the theory. For the most part, individual

equations were studied in the context where they arose; in the case of

boundary-value problems, this meant that the Laplace-Poisson equation

was studied in connection with the theory of gravitation, electrostatics,

or steady-state heat conduction, while the wave equation arose in acous-

tics and optics, etc. The question of existence theorems for boundary-

value problems was raised by the well-known critique by Weierstrass of

Riemann’s justification of the Dirichlet principle, which the latter had

employed to show the existence of a solution to the Dirichlet problem

for plane regions, given appropriate boundary conditions. The efforts to

rehabilitate Riemann’s proof were many. The first to succeed, beginning

around 1870, were those of Carl Neumann — known as the method of

the arithmetic mean, which established the existence of solutions for the

Dirichlet problem by a method of approximate solutions; and those of

Hermann Amandus Schwarz.

Both Neumann’s work and that of Schwarz were seen by most read-

ers as part of a specialty, called potential theory, which concerned itself

not only with the theory of the Laplace-Poisson equation and associated

boundary-value problems, but also with the associated special functions

(spherical harmonics, etc.) and with applications especially in gravitation

(attractions of ellipsoids, figures of planets) and electromagnetic theory

(equilibrium electrostatic densities given an external force, forces given

densities, etc.). However, the work of Neumann and Schwarz was gener-

alized, in the hands of Emile Picard, to become the method of successive

approximations, which Picard showed could be applied to a wide variety

of boundary-value problems for second-order equations. At around the

same time, Picard’s Paris colleague Henri Poincaré began to systemat-

ically investigate the analogies between the various partial differential

equations, mostly of second order, which are associated with physical

problems.
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These simultaneous efforts may be seen as part of the establishment of

the subject of partial differential equations as a recognized research spe-

cialty, independent of its applications. At the same time, to an increasing

degree, mathematical physics and pure mathematics were in the process

of disciplinary separation. Hence fewer mathematicians undertook both

kinds of research, and an increased specialization of institutions (such

as journals, university departments and institutes) also occurred. This in

turn led to a lessened emphasis on direct physical applications in potential

theory, and to the subsuming of the latter into partial differential equa-

tions as a research specialty. We may see that this in a way completes the

divorce of potential theory from physics, though of course certain prob-

lems were still of interest to physicists. These would however then be seen

as applications of the theory, rather than as instances of it, and tended

to be undertaken by different individuals from the pure mathematical

problems.

It is the purpose of this paper to examine aspects of this transition.

In particular, we shall concentrate on the background to the development

of the method of successive approximations by Picard. As Lützen has

discussed in detail, the method was used as early as 1830 by Liouville

[Lützen 1990, pp. 447–448], though more as a solution method than as an

existence proof, which is how Picard employs it. The pivotal position of

the so-called Dirichlet problem in these developments makes it convenient

to begin with a discussion of research related to this question.

2. CARL NEUMANN AND THE DIRICHLET PROBLEM

The Dirichlet problem is the following: given the values of a function on

the boundary of a region in space or in the plane, find a function which

is harmonic on the region and which takes on those boundary values.

It is closely associated with the conformal mapping question; for if we

can solve the problem for a particular region (e.g. a circular disc) we can

extend the solution to other regions through composition with a harmonic

function which provides a conformal representation of the region onto the

disc. This idea was first worked out by Bernhard Riemann in his 1851

dissertation. There were well-known difficulties with Riemann’s approach,

however; his existence proof depended on the “Dirichlet principle”, about

which much has been written. In particular, Weierstrassian critiques called
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into question the validity of the Riemann mapping theorem, one of the

cornerstones of Riemann’s function theory.

These critiques were addressed, from rather different standpoints, by

Carl Neumann (1832–1925) and Hermann Amandus Schwarz (1843–1921),

beginning in the 1860s and culminating in successful results about 1870.

These works are indicative of the transitional state of affairs with regard

to partial differential equations in Germany at the time, and were of

particular importance to Picard.

Carl Neumann’s earliest work on potential theory had revolved around

the Dirichlet problem; his other interests in the period show that he

was influenced by Riemann in this regard. In 1861, while at Halle,

Neumann produced the first of his many papers on this question,

The paper, “Ueber die Integration der partiellen Differentialgleichung

∂2Φ/∂x2 + ∂2Φ/∂y2 = 0”, treated the Dirichlet problem in the plane. It

contains two principal results, both solving the problem explicitly for a

limited class of regions. For Neumann, the work remained close to his phys-

ical investigations; he began by pointing out the analogy with the three-

dimensional problem of steady state temperature distribution. The prob-

lem, specifically, is to find a function F (x, y) which satisfies the Laplace

equation inside a connected region R in the plane bounded by a curve of

arbitrary form such that F and its first derivatives remain finite, single-

valued, and continuous inside R, possessing given values on the boundary

of R. In the three-dimensional case, Neumann points out, the use of the

theory developed by Green and Gauss of the potential corresponding to

the Newtonian attraction law is of great assistance with the problem, and

further:

“Likewise it is useful here in considering our planar problem to assume

as an auxiliary a hypothetical matter or fluid which is distributed arbitrar-

ily in the plane, for which the potential of two particles on one another

is equal to the product of their masses multiplied by the logarithm of the

distance between them.”1

That one requires auxiliary fluids rather than auxiliary functions seems

1 “Ebenso ist es hier bei Behandlung unseres Problems der Ebene zweckmässig, eine
fingirte Materie oder ein fingirtes Fluidum zu Hülfe zu nehmen, welches auf beliebige
Weise in der Ebene vertheilt wird, und für welches das Potential zweier Theilchen
aufeinander gleich ist dem Product ihrer Massen multiplicirt mit dem Logarithmus
ihrer Entfernung” [Neumann 1861, p. 336].


