
Astérisque

GREGORY A. FREIMAN
Structure theory of set addition

Astérisque, tome 258 (1999), p. 1-33
<http://www.numdam.org/item?id=AST_1999__258__1_0>

© Société mathématique de France, 1999, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1999__258__1_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Astérisque 258, 1999, p. 1-33 

S T R U C T U R E T H E O R Y O F S E T A D D I T I O N 

by 

Gregory A. Freiman 

Abstract. — We review fundamental results in the so-called structure theory of set 
addition as well as their applications to other fields. 

1. 'Structure theory of set addition'^1) is a shorthand for a direction in the study of 
sets which extracts structures from sets for which some properties of their sums (or 
products in a non-abelian case) are known. 

Here is an indication of what is meant by "structure". The first stage is to build 
an equivalence relation on sets. Then, by taking well chosen representatives of an 
equivalence class we are able to reveal its properties and thereby describe its structure 
(see, for example, the Definition and Theorem in §6). 
2. This review is written in the following way. In §§3-8 we explain the main ideas. In 
§§9-12 we make some historical remarks. Then in §§13-19 we present several concrete 
problems in additive and combinatorial number theory, showing how new results may 
be obtained with the help of the described new approach. Further then in §§20-27 we 
try to show a diversity of fields where the ideas of "Structure Theory" may be applied. 
Finally in §§28-35 we discuss methods and problems. In the bibliography we include 
references to a wider spectrum of subjects which may be treated from the point of 
view of Structure Theory. 
3 . This approach to additive problems was originally given the name "Inverse prob
lems of additive number theory". A series of nine papers under this heading was 
published in 1955-1964 (see [85], [86], [87], [88], [89], [90], [91], [92] and [98]). 
4. I quote from my lecture in the Fourth All-Union Mathematical Congress, Leningrad, 
3-12 July 1961 (see [84]): 

1991 Mathematics Subject Classification. — 11 02, 11Z05. 
Key words and phrases. — Structure theory of set addition, inverse problems of additive number 

theory, small doubling property, isomorphism of subsets. 
WThis paper is based on my review lecture given at the conference on Structure theory of set 

addition held at CIRM (Centre International des Rencontres Scientifiques), Luminy, Marseille, on 
10 June 1993. 
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2 G.A. FREIMAN 

"The term inverse problems of additive number theory appeared in 
1955 in two of my papers [85]^ and [86]. In [85] the following prob
lem was studied. Let 

a i , a 2 , . . . , a r , . . . (1) 
be an unbounded, monotonically increasing sequence of positive num
bers. To have an asymptotic formula 

logg(w) ~ Aua, where A > 0,0 < a < 1 

it is necessary and sufficient that 

n(u) ~ B(A,a)ua/1-a 

where n(u) is the number of terms of a sequence (1) not exceeding 
u, and q(u) is the number of solutions of the inequality 

a in i 4- a2n2 H < u. 

In [86] the case 

\ogq{u) = Aua + O(txf), where 0 < ai < a, 

was studied and an estimate of the error term in the asymptotic 
formula for n{u) was obtained. 

One can easily see that if q(u) is known then (1) is determined in 
a unique way (see [85]). In 'direct' problems we study q(u) when the 
sequence (1) is given; a particular case is the classical problem on the 
representation of positive integers as sums of an unlimited number 
of positive integers. 

Thus a direct problem in additive number theory is a problem in 
which, given summands and some conditions, we discover something 
about the set of sums. An inverse problem in additive number theory 
is a problem in which, using some knowledge of the set of sums, we 
learn something about the set of summands. 

Several cases of inverse problems were studied earlier; see [14] and 
[67]. 

Paul Erdos, in 1942, found an asymptotic formula for n(u) when 

\ogp{u) ~ ay/u 

where p(u) is the number of solutions of an equation 

aini + a2n2 H = u 

where {ai} is some sequence of positive integers (see [67]). 
In the same paper another inverse problem was studied; if q(u) ~ 

Cu2a , where q(u) is the number of solutions of an inequality 

ai + a,j < u, 

2̂̂ The reference numbers given accord with the bibliography of this paper and not the original 
text. 
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STRUCTURE THEORY OF SET ADDITION 3 

then 
n(u) ~ C\u . 

In 1960 V. Tashbaev [252] studied the problem of estimating the error 
term for this inverse problem. 

We will now explain how problems on the distribution of prime 
numbers are connected with inverse problems. If we define 

q(u) = [eu] 

then di = log pi , where pi denotes the ith prime number. Thus the 
problem of the distribution of prime numbers may be treated as an in
verse problem of additive number theory of the type described above. 
The study of inverse problems for different q{u) close to [eu]1 and also 
of direct problems when n(u) is close to eu/u, may give some insight 
into the problem of the distribution of primes, in a way similar to 
that in which the behaviour of a function in the vicinity of a point 
may help to find its value at that point (see A.Beurling [14] and 
B.M.Bredichin [30], [31], [32] and [33]." 

The results of Diamond (see [57], [58], [59], [60] and [61]) should of course be 
mentioned. 

The treatment of prime distribution problems as inverse additive problems have 
not developed up to now. I still consider this approach very hopeful. 
5. We pass on now to the study of additive problems with a fixed number of sum-
mands. The majority of papers mentioned in §3 treat the addition of two equal sets. 
The study of this particular case is usually sufficient to develop ideas, methods and 
results as well as their use in applications. 

Let us start with K C Z with \K\ = k. Define 

2K = K -j- K = {x \ x — al -\- aj, ai,CLj e K}. 

We may ask the question what is the minimal cardinality of 2K1 Evidently, 

\2K\ >2k-l. (2) 

Suppose now that K is such that \2K\ is minimal i.e. \2K\ = 2k — \. What can be 
said about such a Kl It is clear that, 

\2K\ = 2k - 1, (3) 

only if K is an arithmetic progression. 
Suppose now that \K + K\ is not much greater than this minimal value. In that 

case we have the following result [87], describing the structure of K. 

Theorem 1. — Let K be a finite set, K Ç Z. / / 

\K + K\<2k-l + b, 0<b<k-3 

then K is contained in an arithmetic progression of length k + b. 
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4 G.A. FREIMAN 

Further, suppose that we know that 

\2K\ < Ck, (4) 
where C is any given positive number, we may ask what then is the structure of K? 
6. The theorem answering this question (we will quote it as a main theorem) was 
proved in a previously mentioned series of papers, expositions of it were given in [81] 
and [82], and an improved version of a proof was presented in [105]. We are citing 
here the result of Y. Bilu [16], where he studies a case when C in (4) is a slowly 
growing function of k. 

Definition. — Let A and B be groups, and let K C A and L C B. The map </>: K —>• L 
is called an Fs-homomorphism, if for any # i , • • • ,xs and y±, • - • ,ys in K we have 

xx-\ + xs = yi + • • • + y s • # £ i ) + • • • + 4>(x8) = <t>{yi) + • • • + <f>(ya). 
The Fs-homomorphism <f> is an Fs-isomorphism if it is invertible and the inverse (j> 1 
is also an Fs-homomorphism. 

Let P C Zn be given by 

P = { 0 , . . . , 6 i - l } x . . . x { 0 , . . . , 6 n - l } . 

We have |P |=&i. . . bn. In this paper we will call P an n-dimensional parallelepiped. 

Theorem 2. — Let K c Z and suppose that 

\K + K\ <ak (5) 

where 
k = \K\ >k0(a) № + il 

2(\a + 11 - a) 1, 

then there exists an n-dimensional parallelepiped, P, such that n < [a — 1] and \P\ < 
ck, where c depends only on a and s and there also exists a map (/>: P -> Z which is 
such that P —> <p(P) is an ¥s -isomorphism while K C <f>(P). 

Let us now return to §1. The equivalence relation that we talked about there, 
is now seen to be Fs-isomorphism. A representative of an equivalence class is an 
n-dimensional parallelepiped, P. We now understand that K, a subset of the one-
dimensional space E, has, in fact, a multidimensional structure, being a dense subset 
of an n-dimensional set P (i.e. <^_1(i;C) C P). Consider the numbers 

a = 0((O,... ,O)), ai 0((1,O,. . . ,O)) - a, an 0 ( ( O , Q , . . . , l ) ) - a . 

Then, 

4>(P) [a + aix\ + a2x2 H h anxni with 0 < xi < bi — 1 

Imre Rusza has called such a set </>(P) a generalized arithmetic progression of rank 
n. He gave a new and shorter proof, based on new ideas, of the main theorem together 
with an important generalization; in this the summands A and B may be different, 
although however the condition \A\ — \B\ is required (see [233]). His generalization 
to the case of subsets of abelian groups is to be found in [238]. 
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STRUCTURE THEORY OF SET ADDITION 5 

7. We can now describe an "algorithm" for solving an inverse additive problem, by 
the following steps. 

(i) Choose some (usually numerical) characteristic of the set under study. 
(ii) Find an extremal value of this characteristic within the framework of the prob

lem that we are studying. 
(iii) Study the structure of the set when its characteristic is equal to its extremal 

value. 
(iv) Study the structure of a set when its characteristic is near to its extremal value. 
(v) (vi),. . . continue, taking larger and larger neighbourhoods for the characteristic. 

From estimates obtained by Yuri Bilu it follows that in (5) we can take, for cr, the 
following very slowly growing function of fc, 

a — clog log log log fc. 

It will be very important to study the cases 

<7 = (l0gfc)C (6) 

and 
a = ke, s > 0, (7) 

even if £ is a very small number. 
Here to simplify this extremely difficult problem a little, it is better to take \rK\ 

as a characteristic value, where r is a fixed, positive, but rather large, integer. So our 
condition is now 

|rüf I < k1+£ 

which is much stronger than (5); vK contains kr sums, but no more than k1+€ of 
them are different. 

8. I have here added a playful description of the comparative difficulty of the problems 
discussed, which should not be taken too literally. To prove (2) took one minute. 
Condition (3) was studied in three minutes. The proof of the theorem of §5 together 
with the description of K under the condition \2K\ = 3k — 3 took one month. Proof 
of the main theorem took five years. I will be very happy if we will see results for 
(6) in the next thirty years but I am not certain that for (7) we will have satisfactory 
results even in the next hundred years. 

9. L. Schnirelman [242] was one of the first who passed from studying fixed sets 
to studying general additive properties. Schnirelman introduced the notion of the 
density of a sequence. 

Definition. — Let A — (ai, a2,.. . , a n , . . . ) be an increasing sequence of positive inte
gers and further let, 

A(x) = \{yeA\0<y<x}\, 

and 
d(A) = inf A(x)/x. 

XEN 
The number d{A) is called the Schnirelman density of the sequence A (see step (i) of 
§7). 
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6 G.A. FREIMAN 

10. Define 
A + B = {a-\-b\aeA1 b e B} 

and denote 
a = d(A), (3 = 7 = d(A + B) 

Schnirelman proved that 
7 > a + /? — a/3 

L. Schnirelman and E. Landau conjectured in 1932 and Mann [178] has proved in 
1942 that 

7 > a + /Î. (8) 

11. The famous a + /3 theorem of Mann cannot be improved. Take a sequence 

A ;o , i , . . . , r , z + l , / + 2 , . . . , l - -r, 2Z + l , 2 f + 2 , . . . , 2 l + r , . . . 

It is clear that if r < / then, 
a = = r/l 

However if 2r < I then 
7 = d(2A) = 2r/l = 2a. 

But for A = 5 we always have from (8) that 7 > 2a. So step 2 of §7 is now completed. 
Thus Mann has entirely solved the problem of increase of the density under sum

mation of sequences. Its solution took ten years. Khinchine [151] writes in his book: 
"The problem has become 'fashionable'. Scientific societies proposed a prize 

for its solution. My friends from England wrote me in 1935 that half of English 
mathematicians tried to solve it, putting aside all other obligations" 
When Mann had solved the problem, the interest in these subjects disappeared. 

But what about proving the inequality 7 > 3a? Or, equivalently, what are the 
sequences A for which 7 < 3a? These questions were not asked. 

12. However, Schnirelman density is not a good characteristic. Take A = { 2 , 3 , 4 , . . . } . 
For this sequence we have A(l) — 0 and d(A) = 0. We feel, however, that the value 
1 would be more appropriate for a density. So we arrive at a notion of an asymptotic 
density: 

d(A) — liminf A(x)/x 
x—»00 

In 1953 Martin Kneser [153] proved an analog of the a + /3 theorem for asymptotic 
densities. He described the structure of A and B in the case when 

d(A) + d(B) <d{A + B) 

Recently Yuri Bilu analysed the case when 

di A + A)< ad{A), 

where a £ [2,5/2]. 
To prove his theorem Kneser had to consider, for some positive integer sets of 

residues A and B modulo g for which 

L4 + B| = L4| + | B | - 1 . 
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STRUCTURE THEORY OF SET ADDITION 7 

Cauchy [38] and Davenport [50] have proved that if A C Zp and B C Zp, where p 
is a prime, then 

|A + B | >min(p , |A| + B|-1 

This inequality is analogous to (8). 
Vosper [257] proved that ifA,BC Zp, \A\ + \B\ - 1 < p - 2 and min(|A|, \B\) > 2 

then from \A -f J?| = + — 1 it follows that A and B are arithmetic progressions 
in Zp with the same difference. 

Theorems of Kneser, Cauchy-Davenport and Vosper were amongst the first results 
giving solutions of inverse additive problems. 

13 . We may ask, are there any applications of the ideas and results described in 
§§4-8? For an answer to this question we turn now to the extremal combinatorial 
problems of Paul Erdos. 

We begin with the problem raised by Erdos and Freud [68]. Fix some positive 
integer, L Denote by A a set of x natural numbers, {a\,a2, ...,ax}, with 1 < a\ < 
a2 < • • • < ax < £. Take the set, A0 - { 3 , 6 , 9 , . . . , 3 £ 

3 For each subset B C A0 
the sum of elements in B, the subset sum. is divisible by 3 and thus not equal to any 
power of 2. In this case |̂ 401 £ 

3 However if we take \A\ £ 
3 

then for sufficiently large £ there exist B C A and 
s e N such that 

CLÌEB 
a* = 2s This was proved in [70J. E. Lipkin [167J proved that, for 

sufficiently large £, a set of maximal cardinality, none of whose subset sums is equal 
to a power of two, must be exactly the set AQ. 

The desired result was achieved with the help of analytical methods. However, 
there was a difficulty — how to apply them to prove a result which is valid for some 
integer, say, 

3 
+ 1, but is not valid for an integer which is one less. To cope with 

this, some conditions were tormulated, so that when satished an analytical treatment 
could be used. The case where these conditions were not fulfilled was treated as an 
inverse additive problem. The structure of such sets was thus determined and it then 
became possible to finish the proof. (For more details, see §28.) 

One might think that the problem of representing powers of two by subset sums 
is rather special, even artificial and therefore not that interesting. But, Paul Erdos 
knows how to ask questions. Ideas developed in order to solve the problem explained 
here, have turned out to be sufficient to solve a wide range of problems in Integer 
Programming, see §23 and [41]-[44]. 
14. In the framework of the problem of the previous section we may ask the following 
questions. 

1) Let \A\ > a 
3. 

What is the minimal cardinality \B\ of B C A, whose subset 
sum is equal to some power of 21 

2) What is the minimal number of summands required in the representation of a 
power of 2, if equal summands are allowed? 

These questions were asked and answered in a paper of M. Nathanson and A. 
Sarkozy [201]. The sufficient number of summands required was estimated to be at 
most 30360 and 3503, respectively. Using the Theorem of §5 it appeared to be possible 
to improve these estimates to 8 and 6, respectively (see [104]). We will here briefly 
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8 G.A. FREIMAN 

explain the main ideas. If we apply the Theorem of §5 to some set A C [l,f], then 
under doubling the number of elements is multiplied, roughly, by 3 and the length 
of the segment where the sum 2A is situated is multiplied by 2. So, the density is 
multiplied, roughly, by 3 

2 
After the doubling is repeated twice, the density of 4A will 

be > l 
3 

3 
2 

3 
2 

3 
4 

One more doubling (or more accurately summing 4A + 2A) will 
give a long interval, m SA (or even m 6A), containing then some power of 2. 

Noga Alon gave a simple example showing that 4 summands in the case of differ
ent and 3 summands in a case of possibly repeating summands are not, in general, 
sufficient. Recently, Vsevolod Lev [160] found the exact number of summands, in a 
case of possibly repeating ones. He showed that four summands are sufficient. 

The following questions are of interest. 

1) For given \A\ and s, find, f(\A\,£,s), the minimum over all sets A C [1,£] of 
order of the maximal length arithmetic progression contained in sA. 

2) For given \A\ and L, find, / ( |A| ,€ , L), the maximum over all sets A C [1,1] of 
order \A\, of the minimum number of summands, s, such that sA contains an 
arithmetic progression of length L. 

15. Denote by sAA the set of integers which can be written as a sum of s pairwise 
distinct elements from A. The set A is called admissible if, and only if, s ^ t implies 
that sAA and tAA have no element in common. 

E.G. Straus [247] showed that the set {N - k + 1, N - k + 2 , . . . , N\ is admissible 

if, and only if, k < 2 N l 
4 

1. He proved that for any admissible set A C [1,N] 

we have \A\ < 4 3 + o(l N. The constant involved was slightly reduced by 
P. Erdös, J-L. Nicolas and A. Särközy (cf. [75]). In the paper of J-M. Deshouillers 
and G. Freiman [52] (see also [51]) Erdös' conjecture was proved, at least when N is 
sufficiently large. 

Theorem 3. — There exists an integer No such that for any integer N > N0 and any 
admissible subset A C [1,N] we have, 

\A\<2 N 
1 

4 
1. 

The proof was obtained with the help of methods of the type quoted in §5. 

16. Let A C [ l ,n] . If A fl (A + A) = 0 , the set A is called sum-free. P. Erdos and 
P.J. Cameron conjectured that for the number In of sum-free sets we have, 

T = 0(2n'2) (9) 

The typical example of sum-free set A C [1, n] is the set { 1 , 3 , 5 , . . . } of odd numbers. 
We can show that n+n 

2 
is the maximal cardinality of a sum-free set. 

In G. Freiman [101] and the paper of J-M. Deshouillers, G. Freiman, V. Sos and 
M. Temkin [54], the problem of structure of sum-free sets was raised and studied. It 
was solved in the case of large cardinality of A, namely, when \A\ > 0A£ — c, where 
c is some positive constant. An example of such a structure is one in which all the 
elements of A are congruent to 2 or 3 modulo 5. 
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STRUCTURE THEORY OF SET ADDITION 9 

The structure of A having been found, the estimate (9) for this class of A, now 
follows immediately. An open question is to describe the structure of A for smaller 
cardinalities. 
17. In the paper of G. Freiman, L. Low and J. Pitman [106], the following conjecture 
of Erdos and Heilbronn [73] is proved for sufficiently large primes. For A C Zp? where 
p is a prime, \A\ = k < »/50 and k > 60, we have 

\A + A\>2k-3. 

Also, the structure of A was described in the case when \A + A\ < 2.06k — 3. The 
conjecture of Erdos and Heilbronn was proved independently by J.A. Dias da Silva 
and Y.O. Hamidoune, see [246]. 
18. In the paper of A. Yudin [261], an example of large sets of integers, A, was 
constructed for which 

\A + A\ < \A-A\C 
where c = 0.756. The previous example [113] gave only c = 0.89. In [113] the 
estimate c > 0.75 was proved. The result of A. Yudin puts the important additive 
characteristic, 

lim inf log; \A + A 
l o g | A - ; 4 | 

a , 

in a very narrow interval, 0.75 < a < 0.756, and allows one to begin to study the 
structure of sets with values of c which are close to a. Possibly the example of Yudin 
is not far from an extremal structure (look at §7). 
19. In the paper of E. Lipkin [169], the Diderich conjecture [62] was studied. We now 
describe the conjecture. Let G be a finite Abelian group, A C G with 0 ^ A. Let A* 
denote the set of subset sums of the set A. G.T. Diderich called the minimal number 
n such that, if \A\ > n then A* = G, the critical number, c(G) of the group G. 

Let G be an Abelian group of odd order \G\ — ph where p is the least prime divisor 
of |G| and h is a composite integer. Diderich conjectured, and E. Lipkin proved for 
G = ILq when q is sufficiently large, that 

c(G) =p + h-2. 

20. In §§21-27 we will give a few examples of problems in different fields which may be 
looked at and treated as Structure Theory problems. These examples will be chosen 
from Additive Number Theory (§21), Combinatorial Number Theory (§22), Integer 
Programming (§23), Probability Theory (§24), Coding Theory (§25), Group Theory 
(§26) and Mathematical Statistics (§27). Our aim is not so much to enumerate these 
problems as to show how ideas and methods of Structure Theory may influence their 
solution and to show their interdependence. Not many examples are chosen and they 
do not cover the whole stock of related problems. 
21. Additive Number Theory. We now present a paper (see [109]) of G. Freiman, 
H. Halberstam and I.Z. Ruzsa. This paper confronts the problem of how to show that, 
starting from some set of integers A, the set rA contains an arithmetic progression of 
integers of length, L, and difference, d. 
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