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INTERSECTION KINGS OF SPACES OF TRIANGLES

Alberto COLLINO and William FULTON

In 1880 Schubert [12] described a space which compactifies the set of (ordered) plane
triangles, and described its intersection ring — giving a basis for the cycles in each dimension,
and giving algorithms for computing products. In 1954 Semple [13] gave a modern construction
of this space, which we denote X, as an algebraic submanifold of a product of projective and
Grassmann manifolds. Tyrrell [15] verified Schubert's prescription of the cycles and their
relations in codimension one, and calculated a few other intersection products. The aim of this
note is to complete this analysis. We give a formula for the Chow ring (or cohomology ring) of
this space: it is generated by seven classes in codimension one, with an ideal of relations
generated by twelve classes. In particular we verify that Schubert's basis is correct in all
dimensions, and the intersections are as he specified. It is interesting, however, that one of the
defining relations for the intersection ring is independent of those given by Schubert before he
lists the basis.

The proof is remarkably easy. Since the torus of diagonal matrices in SL(3) acts on X
with finitely many (72) fixed points, it follows from the work of Bialynicki-Birula [I], [2] that
the total Chow group A\X) of X is free on 72 generators. We define, purely algebraically, a
graded ring A* with seven generators and certain relations, and verify that A' has 72
generators - the same basis as given by Schubert. It is easy to verify that there is a
homomorphism from the ring A* to the Chow ring A'(X). Since the generator of A6 maps to
the generator of A6^, Poincare duality implies that this homomorphism is an isomorphism.

Because the algorithms for writing any classes in terms of the basic classes are given
explicitly, it becomes a simple algebraic exercise to compute any intersection products, and in
particular any enumerative formula, involving the basic 72 generators.

* Research partially supported by NSF Grant DMS-84-02209.
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Although modern machinery has often been used to give rigorous proofs of classical
formulas in enumerative geometry, this appears to us to be one of the rare instances where a
modern framework actually simplifies the classical calculations. Only part of the first few pages
of Schubert's calculations appear in this approach. Perhaps the most obscure part of Schubert's
paper (pp. 167—181), which may be regarded as a calculation of the Kunneth components of the
class of the diagonal on X^X, can be dispensed with, since this is equivalent to knowing the
intersection products of all pairs of generators in complementary dimensions.

In this paper we also compute the Chow ring of the space of triangles in a projective bundle
over a given variety. This includes the space of triangles in IP0 ; for n=3 a few equations were
included at the end of Schubert's paper [Sch]. As he implies, there are few new ideas needed for
this generalization ; the present framework makes it quite automatic.

Another approach to the computation of intersections on the space X of plane triangles
has been developed by Roberts and Speiser [9], [10]. They show how X can be constructed by
starting with P2 x (p2 x (p2 ^ and forming two blowups, followed by one blowdown. This allows
one to work out, although with some difficulty, any intersection products one may wish. That
approach requires delving considerably deeper into the geometry of the space X, which is of
independent interest. Our approach, on the other hand, gives the whole intersection theory on X
all at once, with minimal knowledge needed about its geometry, and no need to verify
intersection multiplicities of any but the simplest intersection products.

We were led to this idea by reading the preprint of Ellingsrud and Str0mme [5], who used
the Bialynicki—Birula theorem to compute the Chow groups of the Hilbert schemes of points in
the plane. The simple observation of the present note is that the same theorem will yield the
Chow ring of a variety, provided one can guess (say with the help of Schubert!) what the ring
should be, and one can produce a suitable homomorphism from this abstract ring to the actual
ring.

Le Barz [8] has used Hilbert scheme methods to construct a space of triangles in any
non-singular variety. We comment on this in §5.

Schubert gives many applications, of which we discuss only one : to calculate the number of
triangles which are simultaneously inscribed in a given plane curve C , and circumscribed about
a given plane curve D , assuming C and D are suitably general. Here Schubert makes an error
and gives an incorrect formula. This is remarkable not only because of the rarity of any errors in
Schubert's formulas, but also because the correct formula had been given a decade earlier by
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Caylay [3] ! Schubert's error was not in his discussion of the intersection theory of the space of
triangles. Rather, he ignored the fact that the dual of a smooth curve of degree greater than two
has singularities. When this is taken into account, the correct formula comes out.

The first section discusses the space X of complete triangles, reviewing that part of the
work of Schubert and Semple that we need. The second section is pure algebra, describing the
ring A' and giving algorithms for writing any element of A' as a linear combination of 72 basic
classes. The proof that A is the intersection ring of X is given in §3, and the application to
inscribed and circumscribed triangles in §4. The extension to higher dimensions, with a few
complementary remarks occupies §5. Appendix A contains some algebraic manipulations needed
for §2 (and for [12], but Schubert assumed the reader could supply them). Appendix B contains
the tables of intersection products of classes of complementary dimensions. In Appendix C we
prove a simple "Leray Hirsh" theorem for Chow groups of fibre bundles whose fibre is a variety
such as the variety of plane triangles, or any smooth project! ve variety with <C* action with
finitely many fixed points.

We thank Joe Harris for useful advice about the influence of plane curve singularities on
enumerative formulas, and Steven Kleiman for pointing us to Cay ley's paper.
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Section 1. The compactified space of triangles.

We follow Schubert's notation for ordered triangles in the plane. We sketch a typical
member of each type, according to dimension of the loci of such triangles.

A general triangle has vertices a, 6, c, with the opposite sides being lines a, /?, 7:

Dimension 6

Five—dimensional families:

e : the three lines coincide in one line denoted g , on which there are three vertices
a, 6, c.

r : dually, the three vertices coincide in a point s , through which pass three lines
Q.A7.

0a. : the two lines /? and 7 coincide in a line g , the two points b and c coincide in
a point s on g ; a is another point on g , while a is another line through s .

0b and Qc are defined similarly, by permuting the vertices and edges.

Dimension 5

^g • c t • ^ l ' • \^s.a.b.c

Aa b c ' /\ ^.b.c '.•3-

Type € Type r Type ̂


