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DYNAMICAL COMPLEXITY
AND

CONTROLLED OPERATOR K-THEORY

by

E. GUENTNER, R. WILLETT & G. YU

Abstract. — In this paper, we introduce a property of topological dynamical systems
that we call finite dynamical complexity. For systems with this property, one can
in principle compute the K-theory of the associated crossed product C∗-algebra by
splitting it up into simpler pieces and using the methods of controlled K-theory. The
main part of the paper illustrates this idea by giving a new proof of the Baum-Connes
conjecture for actions with finite dynamical complexity.

We have tried to keep the paper as self-contained as possible: we hope the main part
will be accessible to someone with the equivalent of a first course in operatorK-theory.
In particular, we do not assume prior knowledge of controlled K-theory, and use a new
and concrete model for the Baum-Connes conjecture with coefficients that requires
no bivariant K-theory to set up.

Résumé. (Complexité dynamique et K-théorie contrôlée). — Nous introduisons une
nouvelle propriété des systèmes dynamiques topologiques, que nous appelons com-
plexité dynamique finie. Les produits-croisés de C∗-algèbres associés aux systèmes
dynamiques ayant cette propriété peuvent être décomposés en parties plus simples,
ce qui permet de calculer leurs groupes de K-théorie, via des méthodes de K-théorie
contrôlée.

Dans cet article, nous illustrons cette idée en donnant une nouvelle preuve de la
conjecture de Baum-Connes pour les actions de complexité dynamique finie. Nous
avons essayé de rendre l’article aussi indépendant du reste de la littérature que pos-
sible, afin qu’il reste accessible pour quelqu’un n’ayant suivi qu’un premier cours de
K-théorie opératorielle. En particulier, nous ne supposons aucune connaissance préa-
lable de la K-théorie contrôlée, et nous utilisons un nouveau modèle concret pour la
conjecture de Baum-Connes à coefficients qui n’utilise pas la K-théorie bivariante de
Kasparov.
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CHAPTER 1

INTRODUCTION

Throughout this paper, the symbol ‘Γ

⟲

X’ will mean that Γ is a countable discrete
group, X is a compact Hausdorff space, and Γ acts on X by homeomorphisms. We
will abbreviate this information by saying that ‘Γ

⟲

X is an action’.
Our work here is based around a new property for actions, which we call finite dy-

namical complexity. This is partly inspired by the geometric notion of finite decompo-
sition complexity, introduced by the first and third authors together with Tessera [8],
and by the notion of dynamic asymptotic dimension, which was introduced by the
current authors in earlier work [10].

The precise definition of finite dynamical complexity requires groupoid language
to state; rather than get into details here, we just give an idea and refer the reader
to Definition 3.14 (see also Definition A.4) for the precise version. Roughly, then, we
say an action Γ

⟲
X decomposes over some collection C of ‘dynamical systems’ (more

precisely, étale groupoids) if it can be ‘locally cut into two pieces’, each of which is
in C . The action Γ

⟲

X has finite dynamical complexity if it is contained in the smallest
class C that is: closed under decompositions; and contains all dynamical systems that
are ‘essentially finite’ (more precisely, have compact closure inside the ambient étale
groupoid).

This definition allows the K-theory groups K∗(C(X) ⋊r Γ) to be computed, at
least in principle: the idea is that one can often compute the K-theory of essen-
tially finite pieces using classical (‘commutative’) techniques from algebraic topology
and the theory of type I C∗-algebras, then use generalized (‘controlled’ [19]) Mayer-
Vietoris arguments to reassemble this into the K-theory of the whole crossed prod-
uct C(X) ⋊r Γ. Strikingly, the C∗-algebras C(X)⋊r Γ to which these methods apply
are often simple; thus one has no hope of applying classical Mayer-Vietoris techniques,
as these require the presence of non-trivial ideals. This strategy works particularly
well when one is trying to show vanishing of certain K-theory groups.

To illustrate this strategy for computing K-theory, the main part of this paper
applies the idea above to the Baum-Connes conjecture for an action Γ

⟲

X with finite
dynamical complexity. This conjecture (a special case of the Baum-Connes conjecture
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2 CHAPTER 1. INTRODUCTION

for Γ with coefficients [4]) posits that a particular assembly map

(1.1) µ : KKtop
∗ (Γ, C(X)) → K∗(C(X) ⋊r Γ)

is an isomorphism; here the domain is a topologically defined group associated to the
action, and the codomain is the operator K-theory of the reduced crossed product
C∗-algebra C(X)⋊rΓ, an analytically defined object. The existence of such an isomor-
phism relating two quite different aspects of the action has important consequences
for both: for example, it has consequences for Novikov-type conjectures associated
to Γ, and implies the existence of various tools to better understand the K-theory of
the crossed product.

The main part of the paper proves the following result, which is inspired in part by
the third author’s work [38] on the coarse Baum-Connes conjecture for spaces with
finite asymptotic dimension, the first and third authors’ work with Tessera on the
bounded Borel conjecture for spaces with finite decomposition complexity [8], and
the work of all three authors on dynamic asymptotic dimension [10].

Theorem 1.1. — Let Γ

⟲

X be an action with finite dynamical complexity, where X is
a second countable compact space. Then the Baum-Connes conjecture holds for Γ with
coefficients in C(X).

Our proof of Theorem 1.1 starts by replacing the problem of proving that µ as in
line (1.1) above is an isomorphism with the problem of showing that the K-theory of
a certain obstruction C∗-algebra A(Γ

⟲

X) vanishes. For this obstruction C∗-algebra
one can apply the strategy for computing K-theory outlined above, and show that it
is indeed zero.

The hypotheses of Theorem 1.1 cover many interesting actions: we refer the reader
to our companion paper [10], particularly the introduction, for a discussion of the case
of finite dynamic asymptotic dimension. We suspect that finite dynamic dimension
implies finite dynamical complexity, but did not seriously pursue that problem.

Relating the above to the literature, we should note that Theorem 1.1 is implied
by earlier work: indeed, it follows from work of Tu [31] on the Baum-Connes conjec-
ture for amenable groupoids and the fact (Theorem A.3 below) that finite dynamical
complexity of a groupoid implies amenability. Some of the key tools in Tu’s proof are
the Dirac-dual-Dirac method of Kasparov [16], the work of Higson and Kasparov on
the Baum-Connes conjecture for a-T-menable groups [11], and Le Gall’s groupoid-
equivariant bivariant K-theory [18]. As already hinted at above, our proof is quite
different: it gives a direct way of understanding the group K∗(C(X) ⋊r Γ) that uses
much less machinery.

Our motivations for giving a new proof of Theorem 1.1 are fourfold. First, we want
to illustrate the controlled methods for computing K-theory as already mentioned
above. Second, we want to make the Baum-Connes theory more direct so that it might
be adapted to computations of K-theory for much more general classes of C∗-algebras
with an eye on the Künneth theorem and UCT problem as pursued in [20, 34] and [36]
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CHAPTER 1. INTRODUCTION 3

respectively. Third, we want to make techniques from the Baum-Connes theory more
algebraic, so as to highlight and strengthen interactions with the Farrell-Jones theory
in algebraic topology [2, 3]. Fourth, the proof is fairly self-contained: we have tried
to make it accessible to a reader who has understood an introduction to C∗-algebra
K-theory at the level of [27] or [32].

On this fourth point, we hope that the paper can be read without prior knowledge of
Baum-Connes theory, groupoids, controlled K-theory, or even crossed product C∗-al-
gebras. This makes the proof more elementary than most existing proofs of special
cases of the Baum-Connes conjecture. In order to do this, we introduce a direct geo-
metric / combinatorial reformulation of the Baum-Connes conjecture; we show that
it agrees with the traditional one using Kasparov’s KK-theory [4] in an appendix.
Using these elementary methods also has the advantage that Theorem 1.1 remains
true (correctly interpreted) if one drops the second countability assumption on X.

To conclude this introduction, we should note that this paper only just starts the
study of finite dynamical complexity and its relation to other properties. We ask
several open questions in A.14 through A.19 below: some of these might be difficult,
but we suspect some are quite accessible.

Outline of the paper. — Section 2 builds a concrete model for the Baum-Connes as-
sembly map for an action Γ

⟲
X based on the localization algebras used by the third

author to give a model for the coarse Baum-Connes assembly map [37]. Section 3
introduces some language from groupoid theory that will be useful in carrying out
various decompositions, and which is crucial for the definition of finite dynamical com-
plexity given at the end of that section. Section 4 gives a self-contained description of
the controlled K-theory groups we will need for the proof, following work of the third
author [38], and of Oyono-Oyono in collaboration with the third author [19]. Section 5
lays out the strategy for proving Theorem 1.1, which is based roughly on the proof
of the coarse Baum-Connes conjecture for spaces with finite asymptotic dimension
of the third author [38], and the work of the first and third authors with Tessera [8]
on the stable Borel conjecture; in particular, it reduces the proof to two technical
propositions. These technical propositions are established in Sections 6 and 7. There
are two appendices, which require a bit more background of the reader. Appendix A
relates our finite dynamical complexity to finite decomposition complexity in the sense
of [8], and to topological amenability [1] as well as asking some questions; this requires
some background in the general theory of étale groupoids. Appendix B identifies our
model for the Baum-Connes assembly map with one of the standard models using
KK-theory; as such, it requires some background in equivariant KK-theory. The ap-
pendices are included to connect what we have done here to preexisting theory, and
are certainly not needed to understand the rest of the paper.
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