Bulletin

de la SOCIETE MATHEMATIQUE DE FRANCE

LARGE DEVIATIONS AND PATH
PROPERTIES OF THE TRUE
SELF-REPELLING MOTION

Laure Dumaz

Tome 146
Fascicule 1

2018

SOCIETE MATHEMATIQUE DE FRANCE

Publié avec le concours du Centre national de la recherche scientifique

pages 215-240



Le Bulletin de la Société Mathématique de France est un périodique
trimestriel de la Société Mathématique de France.

Fascicule 1, tome 146, mars 2018

Comité de rédaction

Christine BACHOC Julien MARCHE
Yann BUGEAUD Kieran O’GRADY

Jean-Francgois DAT Emmanuel RUSS
Pascal HUBERT Christophe SABOT

Laurent MANIVEL
Marc HERZLICH (Dir.)

Diffusion
Maison de la SMF AMS
Case 916 - Luminy P.O. Box 6248
13288 Marseille Cedex 9 Providence RI 02940
France USA

commandes@smf .emath.fr http://www.ams.org

Tarifs

Vente au numéro : 43 € ($64)
Abonnement électronique : 135 € ($202),
avec supplément papier : Europe 179 €, hors Europe 197 € ($296)

Des conditions spéciales sont accordées aux membres de la SMF.

Secrétariat
Bulletin de la Société Mathématique de France
Société Mathématique de France
Institut Henri Poincaré, 11, rue Pierre et Marie Curie
75231 Paris Cedex 05, France
Tél. : (33) 01 44 27 67 99
bulletin®@smf.emath.fr e http://smf.emath.fr

© Société Mathématique de France 2018

Tous droits réservés (article L 122—4 du Code de la propriété intellectuelle). Toute représen-
tation ou reproduction intégrale ou partielle faite sans le consentement de l’éditeur est il-
licite. Cette représentation ou reproduction par quelque procédé que ce soit constituerait une
contrefagon sanctionnée par les articles L 835-2 et suivants du CPI.

ISSN 0037-9484 (print) 2102-622X (electronic)

Directeur de la publication : Stéphane SEURET



http://smf.emath.fr

Bull. Soc. Math. France
146 (1), 2018, p. 215-240

LARGE DEVIATIONS AND PATH PROPERTIES
OF THE TRUE SELF-REPELLING MOTION

BY LAURE DuMAZ

ABsTRACT. — We derive some large deviation bounds for events related to the “true
self-repelling motion,” a one-dimensional self-interacting process introduced by Téth
and Werner, that has very different path properties than usual diffusion processes. We
then use these estimates to study certain of these path properties such as its law of
iterated logarithms for both small and large times.

REsuME (Grandes déviations et propriétés trajectorielles du « vrai» processus auto-
répulsif ). — Nous montrons dans cet article certaines bornes de grandes déviations
pour des événements liés au « vrai » processus auto-répulsif, un processus unidimen-
sionnel introduit par Toth et Werner, qui a des propriétés trajectorielles trés différentes
de celles des diffusions usuelles. Nous utilisons ensuite ces estimées pour étudier cer-
taines de ces propriétés trajectorielles concernant la loi du logarithme itéré pour les
petits temps ainsi que les grands temps.

1. Introduction

In the present paper, we study some features of a self-interacting one-
dimensional process called the true self-repelling motion, defined by Téth and
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216 L. DUMAZ

Werner in [9]. Let us first very briefly recall the intuitive definition of this
process and describe the motivations that lead to our study.

The true self-repelling motion is a continuous real-valued process (X;,¢ > 0)
that is locally self-interacting with its past occupation-time. More precisely,
for each positive time t, define its occupation-time measure u; that assigns to
each interval I C R, the time spent in it by X before time ¢:

t
o) = [ ix.er ds.
0

It turns out that for this particular process X, almost surely for each t, the
measure ; has a continuous density Li(x). By analogy with semi-martingales,
where such occupation-time densities also exist, the curve z — L;(z) is called
the “local-time” profile of X at time ¢. Heuristically, the dynamics of X; is such
that the TSRM is locally pushed in the direction of the negative “gradient”
of the local time at its current position. Loosely formulated, one can write
dX; = =V, Li(X:)dt (even if (X;,t > 0) is a random process). For more
details and comments on this description, we refer to [9]. It turns out that this
process is of a very different type than diffusions. For example (see again [9]), its
quadratic variation almost surely vanishes whereas its variation of power 3/2 is
positive and finite. Similarly, it does not have the Brownian scaling property,
it has instead a 2/3 scaling behavior i.e., for any positive A, (X, ¢ > 0) has
the same law as (\2/3X;,t > 0).

This same exponent 2/3 appears in various other models that can be in-
terpreted as continuous height-fluctuations of 1 + 1-dimensional models in the
Khardar-Parisi-Zhang universality class (such as the Tracy-Widom distribution
for eigenvalues of large random matrices, the movement of the second-class
particle in a TASEP etc.). TSRM seems however at present to be one of the
few such “non-diffusive” continuous processes that probabilists can define (see
also [2] for related questions). All this gives us some motivation to study in
more detail its behavior, in order to see what features it shares with the other
previously-mentioned models, and also for its own independent interest.

Let us now describe briefly the results of the present paper: Both for the
process (X;,t > 0) itself as for the height process (H,t > 0), we give upper
and lower bounds for the probability that their value at a given time is very
large. Combined with 0—1-law arguments, this enables us to derive almost sure
fluctuation results (of the type of the law of the iterated logarithm) for these two
processes. For instance, we shall see that limsup,_,_ X;/(t*/3(loglogt)/?) is
almost surely equal to a finite positive constant, and a similar result when
t— 0.

The construction of the process X; is based on a family of coalescing one-
dimensional Brownian motions starting from all points in the plane. Such
families had been constructed by Arratia in [1], and further studied in [9, 8, 3, 6]
and are called “Brownian web” in the latter papers. As a consequence, the
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estimates on the TSRM will follow from results concerning this Brownian web.
In Section 2, we will recall some aspects of the construction of TSRM and some
features of the Brownian web. In Section 3, we will focus on the large deviation
estimates concerning X;, we then derive the LIL for X in Section 4, and we
finally focus on the fluctuations of the height-process in the final Section 5.

Acknowledgement. — 1 am grateful to my supervisors Balint Téth and Wen-
delin Werner for their guidance throughout this work. Special thanks go to
Wendelin Werner for his careful reading of successive versions of this paper,
and to the referees for their insightful comments.

2. Preliminaries and notations

In this section, we put down some notation, and collect some elementary
estimates that will be useful later on.

2.1. Versions of the Brownian web. — The true self-repelling motion (TSRM)
is a deterministic function of a certain family of coalescing one-dimensional
Brownian motions. There are two natural variants of TSRM, that respectively
correspond to such Brownian families in the entire plane (this is the “stationary”
TSRM, this version has stationary increments) or in the upper half-plane (this
is the TSRM with “zero-initial conditions”). Other initial conditions are also
possible, see Section 4 of [8] for examples.

Let us briefly first recall the construction in the stationary case which will be
the main focus of this paper. To start with, choose any deterministic countable
dense family @ of points (Z, ﬁ) in the plane, say @ = Q2. It is then possible
to define the joint law of a family (Ai,ﬁ(')’ (z, l~1) € @) in such a way that, for
each (Z, }NL) €Q, Aj’;l is a function from [Z, c0) into R, that is distributed like a
Brownian motion started from height 4 at time Z. Furthermore (see e.g., [9] for
details), different curves are “independent until their first meeting time” and
they coalesce after this meeting time (and follow the same Brownian evolution).
Recall that () is dense in the plane, so that the picture of all these lines is dense
in the plane. The coalescent structure nevertheless defines a tree-like structure
rooted “at x = +00”. This family of curves A is often referred to as the “forward
lines”.

If we are given a countable dense family Q in the plane, then one can almost
surely define the family of “backward” lines (A; 7 (), (@, h) € Q) such that each
A; ; is now a function defined on (—00,Z] in such a way that the backward
lines can be viewed as the “dual tree” of the previous dense tree (it is therefore
a deterministic function of all forward lines). It is proved in [9] that this family
of backward lines has the same law as the reversed image (changing z into —z)
of the law of the forward lines (choosing Q to be the symmetric image of Q).
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