Astérisque

M. G. ZAIDENBERG An analytic cancellation theorem and exotic

algebraic structures on C^n , $n \ge 3$

Astérisque, tome 217 (1993), p. 251-282 http://www.numdam.org/item?id=AST 1993 217 251 0>

© Société mathématique de France, 1993, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

An analytic cancellation theorem and exotic algebraic structures on C^n , $n \ge 3$

M. G. Zaidenberg

Introduction

Zariski's problem on cancellation (by an affine space) is usually formulated as follows * :

Let $X\times A^n\simeq Y\times A^n$ be an isomorphism of algebraic varieties. Does it follows that $X\simeq Y$?

In general, the answer is negative even for surfaces over C [Da], [tDi]. In an important special case, when $Y = A^k$, it is known only that the answer is positive for $k \le 2$ (M. Miyanishi - T. Sugie and T. Fujita, see [Fu 2] or [Km]).

It was C. P. Ramanujam, who in his earlier attempt to prove the latter result noticed a connection of the problem with the question of existence of exotic algebraic structures on affine spaces [Ra]. The main theorem in [Ra] on a characterization of the affine plane implies that the only complex algebraic structure on \mathbb{R}^4 is the standard structure of \mathbb{C}^2 . (The proof of this theorem contains a great deal of tools that are used now in a study of acyclic algebraic surfaces.) Producing the first example of a topologically contractible smooth complex algebraic surface X, non-isomorphic to \mathbb{C}^2 , C. P. Ramanujam remarked that by the h-cobordism theorem the threefold $X \times \mathbb{C}$ is diffeomorphic to \mathbb{C}^3 , but it is not isomorphic as algebraic variety to \mathbb{C}^3 provided that the above version of the cancellation problem is answered affirmatively. Thus, this does lead to an exotic complex algebraic structure on \mathbb{R}^6 .

In 1987–1989 many new examples of acyclic and contractible algebraic surfaces were constructed (see for instance, [Gu Mi], [tDi Pe], [Su], [Za 2]). In the Appendix to this paper we shall describe two countable series of examples in which each surface X carries a family of curves $X \rightarrow C$ with a generic fibre $C^{**} := C \setminus \{0, 1\}$. We shall distinguish these surfaces up to isomorphism and calculate their logarithmic Kodaira dimensions $\overline{k}(X)$. For most of them $\overline{k}(X) = 2$, so they are of hyperbolic (or log-general) type. In [Za 1], [Za 3] it is proved that

^{*} for the original setting see, for instance, [Ab Ha Ea]

they are the only examples of acyclic surfaces of log-general type which support isotrivial families of curves with the base C (i.e. families with pairwise isomorphic generic fibres). Following [**Ra**] we use these surfaces in order to introduce exotic algebraic structures on affine spaces.

Main Theorem. For any $n \ge 3$ there exists a countable set of complex affine algebraic structures on \mathbb{R}^{2n} which are pairwise biholomorphically nonequivalent.

These structures can be distinguished in an algebraic sense, using the Strong Cancellation Theorem of Iitaka and Fujita [Ii Fu]. And by Strong Analytic Cancellation Theorem 1.10 they differ even in the analytic sense. Indeed, by the Iitaka-Fujita Theorem given an isomorphism $X \times C^n \to Y \times C^n$ the C^n can be cancelled if $\overline{k}(Y) \ge 0$. By Theorem 1.10 below, given a biholomorphism $X \times C^n \to Y \times C^n$ the C^n can be cancelled, giving an isomorphism $X \to Y$ if $\overline{k}(Y) = \dim_C Y$, i.e. if Y is of hyperbolic type. The examples of non-cancellation for (Q-acyclic) smooth affine surfaces with $\overline{k} = -\infty$ [Da], [tDi] show that the assumptions of the first theorem are necessary, while for the second one this is unknown. I do not know also, whether there exist two different complex algebraic structures on \mathbb{R}^{2n} which are analytically the same.

Furthermore, we show that for an acyclic surface X of hyperbolic type, C^n cannot be isomorphic to (and even cannot injectively dominate) a hypersurface of $X \times C^{n-1}$ (Theorem 2.4). (In particular, 'exotic C^n constructed in such a way do not contain C^{n-1} .) This is a generalization of a theorem in [Za 3] on the absence of simply connected curves in acyclic surfaces of general type.

A report on this paper was done at the 29-th Arbeitstagung in Bonn, 1990. It was prepared during the author's stay at the Max Planck Institut fur Mathematik at Bonn and as a guest of the SFB-170 'Algebra and Geometry' at the Mathematisches Institut of Gottingen University. I am very thankful to these Institutes for their hospitality.

Remark. Recently A. Dimca, Sh. Kaliman and P. Russell have obtained new examples of exotic $C^3 - s$, which are hypersurfaces in C^4 . For some of them $\overline{k} = 2$.

1. An analytic cancellation theorem

Let us first recall some known facts about holomorphic mappings into manifolds of hyperbolic type.

1.1. Definition [Ii 1]. A nonsingular quasiprojective variety X is called a manifold of hyperbolic type iff its logarithmic Kodaira dimension $\overline{k}(X)$ coincides with the dimension dim_CX.

1.2. Theorem. Let X be a nonsingular quasiprojective variety and Y be a manifold of hyperbolic type. Then

a) [Sa, Theorem 4.1] Y is a volume hyperbolic complex manifold;

b) [Sa, Proposition 4.2] Every dominant holomorphic mapping $X \to Y$ is regular;

c) [Ii 1, p. 182, Corollary] Every dominant holomorphic mapping $Y \rightarrow Y$ is a biregular automorphism;

d) [Ts] The set Dom(X, Y) of all dominant holomorphic mappings $X \to Y$ is finite.

In Corollaries 1.3 - 1.5 below we preserve the assumptions of Theorem 1.2.

1.3. Corollary ([Ii 1, Theorem 6]; [Sa, Theorem 5.2]). The group Aut Y of biregular automorphisms of Y is finite.

1.4. Corollary. Dom(X, Y) is an open and closed subspace of the space Hol(X, Y) of all holomorphic mappings $X \to Y$, endowed with the compact-open topology.

1.5. Corollary. Suppose that there exist mappings $\varphi \in \text{Dom}(X, Y)$ and $\psi \in \text{Dom}(Y, X)$. Then both φ and ψ are biregular isomorphisms.

1.6. Definition [Ur]. A complex manifold Y belongs to class C iff for any connected complex manifold Z and any holomorphic mapping φ : $Y \times Z \rightarrow Y$ such that for some $z_0 \in Z$ the mapping $\varphi_{z_0} := \varphi | Y \times \{z_0\}$ belongs to the group Aut Y, it follows that $\varphi_z \equiv \varphi_{z_0}$ for every $z \in Z$.

Let us recall that for manifolds of class C the cancellation theorem and the theorem of the uniqueness of a primary product-decomposition hold [Ur].

M. ZAIDENBERG

1.10. Theorem. Let X and Y be smooth irreducible quasiprojective manifolds of hyperbolic type. Let for some k and $m \ge 0$ a biholomorphism $\Phi: X \times C^k \rightarrow Y \times C^m$ be given. Then k = m and there exists a unique biregular isomorphism $\varphi: X \rightarrow Y$ making the following diagram commutative:

In particular, Φ has a triangular form $\Phi(\mathbf{x}, \mathbf{z}) = (\varphi(\mathbf{x}), \psi(\mathbf{x}, \mathbf{z}))$, where $(\mathbf{x}, \mathbf{z}) \in \mathbf{X} \times \mathbf{C}^{\mathbf{k}}$ and where for each $\mathbf{x} \in \mathbf{X}$ the mapping $\psi_{\mathbf{x}} := \psi \mid \{\mathbf{x}\} \times \mathbf{C}^{\mathbf{k}}$ belongs to the group Aut $\mathbf{C}^{\mathbf{k}}$ of biregular automorphisms of $\mathbf{C}^{\mathbf{k}}$.

Proof. By Theorem 1.2, a) X and Y are volume hyperbolic manifolds. Hence by Corollary 1.9 dim_CX = dim_CY and $\mathbf{k} = \mathbf{m}$. Let us consider the holomorphic mapping $\varphi := \pi_{\mathbf{Y}} \circ \Phi | \mathbf{X} \times \{\mathbf{0}_k\} : \mathbf{X} \to \mathbf{Y}$. We will show that φ is a dominant regular mapping.

The holomorphic mapping $\mathbf{f} := \pi_{\mathbf{Y}} \circ \Phi \colon \mathbf{X} \times \mathbf{C}^{\mathbf{k}} \to \mathbf{Y}$ is dominant, therefore dim Ker df(u_0) = k for some $\mathbf{u}_0 = (\mathbf{x}_0, \mathbf{z}_0) \in \mathbf{X} \times \mathbf{C}^{\mathbf{k}}$. Let $\mathbf{X}' \subset \mathbf{X}$ be an affine chart containing the point \mathbf{x}_0 . There exists a regular mapping $\alpha \colon \mathbf{X}' \to \mathbf{C}^{\mathbf{k}}$ such that $\alpha(\mathbf{x}_0) = \mathbf{u}_0$ and the graph $\Gamma(\alpha) \subset \mathbf{X}' \times \mathbf{C}^{\mathbf{k}}$ is transversal to the subspace Ker df (u_0). Let $\tilde{\alpha} := (\mathrm{id}_{\mathbf{X}'}, \alpha) \colon \mathbf{X}' \hookrightarrow \mathbf{X}' \times \mathbf{C}^{\mathbf{k}}$ be the embedding onto the graph $\Gamma(\alpha)$. It is easily seen that the mapping $\varphi_1 := \mathbf{f} \circ \tilde{\alpha} \colon \mathbf{X}' \to \mathbf{Y}$ is dominant.

Consider a family of mappings $\varphi_t := f \circ \tilde{\alpha}_t$, where $\tilde{\alpha}_t := (id_{X'}, t\alpha)$, $t \in C$. By Corollary 1.4 $\varphi_t \equiv \varphi_1$ for all $t \in C$, and by Theorem 1.2, b) φ_1 is regular. Hence $\varphi = \varphi_0 = \varphi_1$ is a dominant regular mapping.

The same arguments applied to the mapping $\eta := \pi_X \circ \Phi^{-1} | Y \times \{0\}$: $Y \to X$ show that η is a dominant regular mapping too. Therefore $\varphi : X \to Y$ is a biregular isomorphism (see Corollary 1.5).

By Corollary 1.4 the mapping $\varphi_z := f | X \times \{z\} : X \to Y, z \in C^k$, does not depend on z. Hence Φ has a triangular form $\Phi(x, z) = (\varphi(x), \psi(x, z))$. Since Φ is a biholomorphism the mapping $\psi_x : C^k \to C^k$ is biholomorphic for all $x \in C^k$. This completes the proof.