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HIGHER CASTELNUOVO THEORY 

David Eisenbud, Mark Green, Joe Harris 1 

0. Introduction 
1. The geometric case: Castelnuovo theory 
2. The algebraic case 
3. Cayley-Bacharach theory 
4. A stepwise formulation 

0. Introduction. 
In this paper and others to follow, we intend to set out a series of con­

jectures concerning the Hilbert functions of points (or more generally, zero-
dimensional subschemes) in projective space; or, more generally still, the 
Hilbert functions of graded Artinian rings. We were first led to make some 
of these conjectures in Eisenbud-Harris [1982] in the course of our work on 
Castelnuovo theory. A special case of these was proved independently by us 
in that paper and by Miles Reid - though as Ciliberto later noted [1987] we 
were both anticipated by G. Fano [1894]. Recently, we saw how our con­
jectures might be generalized; and in this form they relate to a number of 
other areas: for example, another special case is equivalent to a conjectured 
generalization of the classical Cayley-Bacharach theorem (as we will also dis­
cuss here); another to the Kruskal-Katona and Clements-Lindstrom theorems 
of combinatorics (see, for example, Kleitman-Green [1978]); and still others, 
which we intend to describe in a later paper, to questions about the existence 
of exceptional linear series on complete intersection curves. 

Good references for unexplained terminology are Arbarello-Cornalba-
Griffiths-Harris [1985] or Eisenbud-Harris [1982]. 

1The authors are grateful to the NSF - the second through grant number 
DMS 88-02020 for partial support during the preparation of this work 
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1. Castelnuovo theory. 
Recall that a set of points in projective space is in uniform 'position if the 

Hilbert function (= postulation) of a subset depends only on the cardinality 
of the subset. Castelnuovo theory is concerned with the possible Hilbert func­
tions of points in uniform position. Its origins are classical: Castelnuovo first 
used estimates on the Hilbert functions of points to derive his upper bound on 
the genus of an irreducible nondegenerate curve C in projective space P r in 
terms of the degree d of C. Castelnuovo's argument has been reproduced too 
many times to repeat in detail here (see, for example, Eisenbud-Harris [1982] 
or Arbarello-Cornalba-Griffiths-Harris [1985]), but briefly what he shows first, 
by completely elementary means, is that if T C P71"""1 is a general hyperplane 
section of C then 

9(C) < F h\Pn-\lr(ld<dfdfdfg) 

or, in other words, the genus of C is bounded by the sum over all £ of the 
failure of r to impose independent conditons on hypersurfaces of degree L 
Curves of maximal genus for their degree therefore are likely to be those whose 
hyperplane sections V have the smallest possible Hilbert function Zip. Next, 
Castelnuovo shows that among all configurations r of d > 2n + 1 points in 
uniform position in P n _ 1 , the ones with minimal Hilbert function are exactly 
those lying on rational normal curves; he calculates his bound 7r(d, n) on 
the genus of a curve accordingly. Finally, since if T is a subset of a rational 
normal curve any quadric containing T will contain the rational normal curve, 
he shows that if C is a curve achieving his bound the quadrics containing C 
must cut out in P n a surface whose hyperplane section is a rational normal 
curve (in particular, a surface of degree n — 1, the minimum possible degree 
for a nondegenerate surface in P n ) . 

In Eisenbud-Harris [1982], we undertook to extend the results of Casteln­
uovo - in particular, his characterization of curves of maximal genus for their 
degree as lying on rational normal scrolls - to curves of high, but not maxi­
mal genus. This involved asking, for example, "What is the second smallest 
possible Hilbert function of a collection of points?" and in general, "What 
configurations of points have small Hilbert function?" What emerged was the 
following philosophy: The way to achieve a configuration T C P r in uniform 
position having small Hilbert function is to put T on a positive-dimensional 
variety with small Hilbert function - in effect, on a curve of smallest pos­
sible degree, and of largest possible genus given that degree - which is the 
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intersection of the hypersurfaces of low degree containing Y. 

To be specific, let T C P r be a nondegenerate collection of d points in 
uniform position; let hr be its Hilbert function, so that for example for (2) is 
the number of conditions imposed by T on quadrics. Castelnuovo says that if 
d > 2r + 3, then T must impose at least 2r + 1 conditions on quadrics; and if 
for(2) — 2r + 1 exactly, then T must lie on a rational normal curve. Extending 
this, it turned out that if d > 2r + 5 and if hr > 2r + 2 then necessarily 
T had to lie on an elliptic normal curve (Fano [1894],Eisenbud-Harris [1982], 
Reid [unpublished]). We deduced in particular that if a curve C C P n had 
genus exceeding a bound 71*! (G?, n) (substantially lower than 7r(<i, n)), then the 
quadrics containing C have to cut out a surface of degree n in P n , which 
allowed us to classify such curves. Both we and Miles Reid went on to con­
jecture that this pattern would persist, at least for a while: for a < r, we 
conjectured, under the hypothesis d > 2r + 2a + 1 we could conclude that 
either hr > 2r + a + 1 or T lay on a curve of degree r + a — 1 or less in P r . 

In all of these cases, the latter conclusion - that T lay on a curve of small 
degree - would follow immediately if one knew that the intersection of the 
quadrics containing T was in fact positive dimensional. This observation last 
year suggested to us a seemingly trivial restatement. If we hypothesize that 
T is cut out by quadrics, we can ask: given hr(2), what is the largest possible 
d? In other words, What is the largest number d(h) of points of intersection 
of a linear system of quadrics of codimension h in the space of all quadrics 
in P r , given that the intersection of those quadrics is zero-dimensional? In 
these terms, we may summarize the state of our knowledge as of 1981 (and 
its origins) as follows: 

d{r + 1) — r + 1 (elementary) 

d(r + 2) — r + 2 (elementary) 

d(2r — 1) = 2r — 1 (elementary) 

d(2r) = 2r (elementary) 

d(2r + 1) = 2r + 2 (Castelnuovo) 

d(2r + 2) = 2r + 4 (Fano, Eisenbud-Harris, Reid) 
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The conjectures mentioned above extend this pattern to: 

d(2r + 3) = 2r + 6 

d(3r - 3) = 4r - 6 

d(3r - 2) = 4r - 4. 

Note that this conjectured bound on the number of points is sharp, if it 
holds: for h < 2r, of course, any configuration of h points in linear general 
position will be cut out by quadrics and will impose independent conditions 
on quadrics; and for 2r+2 < h = 2r+a < 3r — 2 we can take T the interseciton 
of a linearly normal curve of degree r + a - that is, a curve of degree r + a 
and (maximal) genus a - with another quadric. Note, moreover, that in the 
last case - d(3r — 2) = 4r — 4 - there is also another example we can use to 
show that the bounds is sharp: we can take T the intersection of a rational 
normal scroll I c P r with two more quadrics. 

This last example suggests that at this point the pattern otd(h) increasing 
by 2 each time stops. Indeed, corresponding to the two examples above in 
case h = 3r — 2 there are two examples to suggest that the next value of d 
should be 

d(3r - 1) = 4r. 

On the one hand, the maximal genus of a curve of degree r + a in P r increases 
by 2 from a — r — 1 to a = r, with the result that a curve of degree 2r — 1 
and genus r — 1 in P r will lie on the same number of quadrics as a curve 
of degree 2r and genus r + 1 (that is, a canonical curve). Thus we can take 
r the intersection of a canonical curve in P r with a quadric to arrive at a 
configuration of 4r points imposing only 3r — 1 conditions on quadrics. On 
the other hand, in the latter example, if we replace the rational normal surface 
scroll 5, which has degree r — 1, with a linearly normal surface of one larger 
degree r (for example, a del Pezzo surface or a cone over an elliptic normal 
curve), the intersection of our surface with two quadrics will again have degree 
4r and impose 3r — 1 conditions on quadrics. 

Similar examples indicate that for the next r — 3 steps d(h) will increase 
by 4 each time we increase h: by way of an example, we can take T the 
intersection of a surface of degree r — 1 + (3 with two further quadrics. When 
we get to the case h = 4r — 5, however, we get a new example: the intersection 
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