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FOUNDATIONS OF TWISTED ENDOSCOPY 

Robert E. Kottwitz, Diana Shelstad 

Abstract. — This book develops the foundations of a general theory of twisted en­
doscopy: definition of endoscopic groups, study of the correspondance between twisted 
conjugacy classes and conjugacy classes in endoscopic groups, definition of transfer 
factors, and finally the stabilization of the elliptic part of the twisted trace formula. 
The book also develops a theory of duality and Tamagawa numbers for the hyperco-
homology of complexes T -» U of tori. 
Résumé (Fondements de l'endoscopie tordue). — Ce livre développe les bases de la 
théorie générale de l'endoscopie tordue: définitions des groupes endoscopiques, étude 
de la correspondance entre classes de conjugaison tordue et classes de conjugaison sur 
un groupe endoscopique, définition du facteur de transfert, enfin stabilisation de la 
partie elliptique de la formule des traces tordue. Le livre développe également une 
théorie de dualité et de nombres de Tamagawa pour l'hypercohomologie de complexes 
T U de tores. 
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INTRODUCTION 

In this paper we begin a study of the foundations for a theory of twisted endoscopy 
for reductive groups. While we build on standard endoscopy as developed, for exam­
ple, in [Kl], [КЗ], [L2], [LSI] and [Si], there are new features which will be described 
below and which in turn shed further light on the earlier theory. 

In our setting F is a local or global field of characteristic zero, G is a connected 
reductive group defined over F, в is an F-automorphism of G and to is a quasicharacter 
on G(F) if F is local or on G(A) trivial on G(F) if F is global. Endoscopy for (G, 0, to) 
concerns the representations 7r of G(F) or G(A), as appropriate, for which 7г о 0 is 
equivalent to о; 0 7г. More generally, and for the most part conjecturally, we may 
consider L-packets or Arthur packets П for which П о 0 = и ® П. Associated with 
such representations is a (0, LO)-twisted invariant harmonic analysis: an Arthur trace 
formula, (0, a;)-twisted characters, (0, u;)-twisted orbital integrals and so on. Twisted 
endoscopy has played a role in a variety of problems. For example, the early paper 
[LL] of Labesse and Langlands on standard endoscopy for SL(2) is at the same time 
a study of a twisted endoscopy problem for GL(2): 7г = ш <8> 7Г, and in the study 
of automorphic representations of unitary groups in three variables [R] we find the 
twisted endoscopy associated with base change. 

We will begin by introducing endoscopic groups, or better endoscopic data, for 
(G,0, a), where a is a Langlands parameter for со. Our definitions were announced 
several years ago and indeed were used to recast the definitions for standard endoscopy 
in [LSI]. What remains perhaps as a surprise is the effort required in the general 
case to accommodate the possible lack of a suitable embedding of the L-group of an 
endoscopic group in the L-group of G. The basic theme of endoscopy is transfer from 
H to G, or more properly, transfer from a z-extension Hi of H to G. At the level of 
F- or A-points on the groups, examples such as base change or symmetric square for 
GL(2) have relied on concretely defined norm mappings. For the general case we take 



2 INTRODUCTION 

another more abstract approach, one which is well adapted to arguments involving 
the relevant systems of roots and restricted roots. 

Now suppose that F is local. With the notion of norm mappings from sufficiently 
regular classes of elements in G(F) to classes in Hi (F) we can turn to the matching of 
(0,UJ)-twisted orbital integrals on G(F) with stable orbital integrals on Hi(F). The 
first goal of this paper will be to construct transfer factors. In analogy with standard 
endoscopy [LSI] these are the weighting factors for the (0,a;)-twisted integrals needed 
to achieve the matching with the integrals on Hi (F). Again as in the standard case 
they are quite elaborate for they must carry a great deal of information about the 
values of characters on the groups G(F) and Hi(F). There are new features. We 
need a slight generalization of the comparative study of the embeddings of L-groups 
of maximal tori in the L-group of a reductive group from [LS2] in order to construct 
one of our terms. We replace the Galois cohomology of standard endoscopy with 
Galois hypercohomology (for some complexes of tori of length 2) and introduce a 
pairing on hypercohomology that encompasses both the Langlands pairing for tori 
and Tate-Nakayama duality. We then gather all three cohomologically defined terms 
Ai, Ai, A2 from the standard case into one term involving this pairing, although for 
the purposes of proof of canonicity and so on we have found it convenient to write 
this one term as a product of two, Ai and Ani. 

The first five chapters of the paper, which treat transfer factors, are organized as 
follows. The first chapter reviews results of Steinberg on semisimple automorphisms 
of semisimple groups. These results are used repeatedly in the rest of the paper, often 
without comment. At the end of this chapter one finds the definition of a-data and 
X-data for twisted endoscopy. 

The second chapter begins by giving the definition of endoscopic data (H, H, s, E) 
for (G, 0, a). The group % is an extension of WF by H and £ is an L-homomorphism 
from HtoLG. It is not always the case that the identity map from H to itself can be 
extended to an //-isomorphism from 7itoLH^ which forces us to use z-pairs (Hi, )> 
consisting of a z-extension Hi of H and an //-embedding of H % in LHi extending 
the natural inclusion of H in Hi. The existence of such L-embeddings is proved in 
Lemma 2.2.A. 

The third chapter introduces the abstract norm mapping which relates conjugacy 
classes in H(F) and twisted conjugacy classes in G(F). For this one first constructs 
a bijection from the set of twisted conjugacy classes in G(F) to the analogous set for 
a quasi-split inner form of (G,0). Unfortunately, unless the center of G is trivial, this 
map is not canonical, and there may in fact be no choice for it which is defined over 
F. For most of this paper we treat only the special case in which this difficulty does 
not occur (in other words we assume that the 1-cochain za in (3.1) is trivial); then in 
(5.4) we explain the modifications needed in the general case. 
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INTRODUCTION 3 

The fourth chapter gives the definition of the relative transfer factor A (71,8; 71? 5), 
which should be thought of as the ratio 

A(7l^)/A(71,5) 

of absolute transfer factors, these being canonical only up to a non-zero scalar (inde­
pendent of 7i,(5 of course). In the case of standard endoscopy our relative transfer 
factor coincides with the one in [LSI], except that [LSI] takes -̂extensions of G 
while our more general situation forces us to take -̂extensions of H instead. The 
relative transfer factor is the product of four terms, the third of which, Am, is the 
most complicated. 

The fifth chapter uses the relative transfer factors to define absolute transfer factors 
A(71, (J) and lists their most important properties (see Lemmas 5.1.B, 5.1.C and 
Theorem 5.1.D). In case G is quasi-split and 6 preserves an F-splitting splo there is 
a particular normalization Ao(7i,(S) of the absolute transfer factor, depending only 
on splG, just as in the standard case [LSI]. Let Bo be the Borel subgroup appearing 
in the splitting spl<3 and let A be a 0-stable generic character on the F-points of 
the unipotent radical of Bo. Then one hopes [Sh] that the representations having 
Whittaker models for A will serve as base points in tempered //-packets, and in (5.3) 
this leads us to multiply the absolute factor Ao (71, 8) by a suitable local -̂factor so 
as to obtain another absolute transfer factor AA(7I, £), depending only on the generic 
character A. In (5.5) we give the definition of matching functions. 

Before trying to understand the complicated factor Am in the relative situation 
of (4.4), the reader may find it useful to study the absolute analogue of Am given in 
(5.3). We now sketch this material under a number of simplying hypotheses, in the 
hope that the main idea will come through as clearly as possible. So let us assume for 
the moment that G is quasi-split, semisimple and simply connected. In particular a 
and to are then trivial. Assume further that 0 preserves some F-splitting of G. Let T 
be a 0-stable maximal F-torus of G that is contained in some 0-stable Borel subgroup 
B of G. Note that we do not assume that B is defined over F. Let TQ denote the 
torus TI (1 — 8)(T) (the coinvariants of 6 on T). We think of the canonical surjection 
N : T TQ as an abstract norm map. Let 8 G G(F) and 7 G TQ(F), and assume that 
7 is sufficiently regular. We say that 7 is a norm of 8 if there exist elements t G T(F) 
and g G G(F) such that N(t) = 7 and 986(g)-1 = t. Applying a G V := Gal(F/F) 
to the equality g80(g)~1 — t and using that N(t) — 7 as well as the fact that 7 is 
sufficiently regular (so that the twisted centralizer of t is the group of fixed points of 
0 on T) we see that the 1-cocycle ta := gcr(g)~1 takes values in T and satisfies the 
equality 

t-a(t)-1 = tae(ta)-1. 
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4 INTRODUCTION 

This equality simply says that the pair (ta 1, t) is a 1-hypercocycle of Y in the complex 
T > T. The class inv(7,8) of this 1-hypercocycle lies in the hypercohomology group 
j j i ( i r r ± 4 r ) . 

Now suppose that we are given a twisted endoscopic group H for (G,0) and 
an admissible isomorphism over F from TQ to a maximal F-torus T# of H. Let 
7H be the element of T#(F) corresponding to 7 under this isomorphism. The 
term Ani(7#,#) in the absolute transfer factor is obtained by pairing the element 
inv(7,(J) G T -̂—4 T) with the following element A in the dual hypercohomol­
ogy group H^Wp^f^Af). 

Assume for simplicity that H — LH. Using %-data we embed LTH in LH, and then 
we compose this with the embedding of LH in LG that is part of our endoscopic data, 
obtaining an embedding £TH oi% LTH m LG. Let LGX denote the subgroup oiLG given 
as the semidirect product of the Weil group WF and the identity component of the 
group of fixed points of 0 on G. Note that LGL is the L-group of a twisted endoscopic 
group G1 of G. Again using our %-data, we embed LTH in LG1, and then we compose 
this with the canonical inclusion LG1 <—> LG, obtaining another embedding £1 of LTH 
in LG. Replacing £TH by a conjugate under G we may assume that £rH and £1 agree 
on TH . Then the difference between £rH and £1 is measured by a 1-cocycle A of 
in T, and (1 — 0)(-A-1) is the coboundary of an element ST G T coming from the 
element s appearing in our endoscopic data. The class of the hypercocycle (A-1, ST) 
is the desired element A in H^WF,? ^ 4 f). 

Now we turn to our global results. In [L2] Langlands stabilized the elliptic regular 
terms in the trace formula; our second main goal in this paper is to do the same for 
the twisted trace formula (see [R] for the case of quadratic base change for unitary 
groups in three variables). Although the stabilization process is not difficult, it is 
surprisingly lengthy, partly because of the generality of the situation we consider. To 
ease the reader's task we will now summarize the main steps in the process. 

Let F be a number field and G a connected reductive group over F. To make 
this introduction a little simpler we will assume that the center Z(G) of G contains 
no non-trivial split torus. Let 6 be an automorphism of G over F, and let a be an 
element of 

i/1(WF,Z(G))/ker1(WF,Z(G)). 

Note that a determines a quasicharacter UJ on G(A), trivial on G(F). The construction 
of UJ from a is due to Langlands, but in this paper we find it convenient to use Borovoi's 
method [Bo] instead (see the proof of Theorem 5.1.D(2) for a review of Borovoi's 
method). We assume that UJ is unitary and trivial on Z(G)E(A). Consider the Hilbert 
space 

L2 :=L2(G(F)\G(A)) 
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INTRODUCTION 5 

and let 
/ € C~(G(A)). 

Then / gives us a convolution operator R(f) on L2. Moreover 0 and UJ give us unitary 
operators i?(0),Rw on L2; i?(0) is given by composition with 0_1 and R(UJ) is given 
by pointwise multiplication by UJ. The composition 

R(f)R(8)R(uj) 

is an integral operator with kernel 

K(h,g)=uj(g) ]T /(h-158(g)). 
SeG(F) 

Let (5 G G(F) be 0-semisimple and strongly 0-regular. Write Is for the 0-centralizer 
Cent6>((̂ , G) of (5. As in (3.3) we denote by T$ the centralizer in G of I®; then T<$ is a 
maximal torus of G preserved by Int(£) o 0 and Is coincides with the fixed points of 
Int(£) o 0 on Ts. We say that 6 is 9-elliptic if the identity component of 

h/Z(G)9 

is anisotropic over F. 
Denote by G(F)E the set of S G(F) that are 0-semisimple, strongly 0-regular and 

0-elliptic. Denote by Ke(h,g) the corresponding part of the kernel K(h,g): 

Ke(h,g):=uj(g) £ /(h'160(g)). 
SEG(F)E 

We are interested in the part of the twisted trace formula coming from G(F)E, namely 

Te(f) := / Ke(g,g)dg/dx, 
JG(F)\G(A) 

where dg is the Tamagawa measure on G(A) (which is used to form the convolution 
operator R(f)) and dx is the counting measure on G(F). As usual we can rewrite 
Te(f) as a sum of twisted orbital integrals (see (6.1.1)) 

(1) Te(f) = J2cG-c5-T(I5)-05e(f)-

Here r(Is) denotes the Tamagawa number of the diagonalizable group Is, and Ose(f) 
denotes the twisted orbital integral 

/ ^(g)f(g-1se(g))dg/dt. 
JlS(A)\G(A) 

The numbers CQ and cs are defined in (6.1) (note that CQ is 1 since we assumed 
that Z(G)° is anisotropic). The sum is taken over a set A of representatives for the 
0-conjugacy classes of elements 6 G G(F)E such that UJ is trivial on Is(A). 

The next step (see (6.2)) is to rewrite (1) by combining the terms indexed by 3,5' 
whenever 5,3' are 0-conjugate under G(A). Fix an element 6 G A. The set of 5' G A 
such that 5' is 0-conjugate to S under G(A) is in natural bijection with a certain finite 
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