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AN APPLICATION OF THE EHRENFEUCHT-FRAISSfi GAME
IN FORMAL LANGUAGE THEORY

Wolfgang Thomas

Abstract A version of the Ehrenfreucht-Fraisse game is used to obtain
a new proof of a hierarchy result in formal language theory: It is
shown that the concatenation hierarchy ("dot-depth hierarchy") of
star-free languages is strict.

Resume Une version du jeu de Ehrenfeucht-Fraisse est appliquee pour
obtenir une nouvelle preuve d'un theoreme dans la theorie des-langages
formels: On montre que la hierarchic de concatenation ("dot-depth
hierarchy") deslangages sans etoile est stricte.

1 . Introduction.
The present paper is concerned with a connection between formal lang-
uage theory and model theory. We study a hierarchy of formal languages
{namely, the dot-depth hierarchy of star-free regular languages) using
logical notions such as quantifier complexity of first-order sentences.
In this context we apply a form of the Ehrenfeucht-Fraisse game which
serves to establish the elementary equivalence between structures with
respect to sentences of certain prefix types.

The class of star-free regular languages is of a very basic nature:
It consists of all languages (= word-sets) over a given alphabet A
which can be obtained from the finite languages by finitely many ap-
plications of boolean operations and the concatenation product. (For
technical reasons we consider only nonempty words over A , i . e .
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+languages L c A ; in particular, the complement operation is applied
w . r . t . A^) General references on the star-free regular languages are
McNaughton-Papert ( 1 9 7 1 ) , Chapter IX of Eilenberg ( 1 9 7 6 ) , or Pin
( 1 9 8 4 b ) .

A natural classification of the star-free regular languages is obtain-
ed by counting the "levels of concatenation" which are necessary to
build up such a language: For a fixed alphabet A , let

B.. = {LcA'^lL finite or cofinite),
B = { L c A |L is a boolean combination of languages

of the form L • . . . - L (n > 1 ) with L ^ , . . . , L ^ € B^} .

The language classes B , B , , . « . form the so-called dot-depth hierarchy
(or: Brzozowski hierarchy), introduced by Cohen/Brzozowski ( 1 9 7 1 ) . In
the framework of semigroup theory, Brzozowski/Knast ( 1 9 7 8 ) showed that
the hierarchy is infinite ( i . e . that B^ B^_^ for k > 1 ) . The aim of
the present paper is to give a new proof of this result, based on a
logical characterization of the hierarchy that was obtained in Tho-
mas ( 1 9 8 2 ) . The present proof does not rely on semigroup-theory; in-
stead, an intuitively appealing model-theoretic technique is applied:
the Ehrenfeucht-Fraisse game.

Let us first state the mentioned characterization.result, taking
A = { a , b } . One identifies any word W G A 4 ' , say of length n , with a
"word model"

w = ( { 1 , . . . , n } , < , m i n , m a x , S , P , Q ^ , Q ^ )
where the domain { 1 , . . . , n } represents the set of positions of letters
in the word w , ordered by < , where min and max are the first and
the last position, i . e . min = 1 and max=n, S and P are the succes-
sor and predecessor function on { 1 , . . . , n } with the convention that
S(max) =max and P(min) =min, and Q^Q^ are unary predicates over
{ 1 , . . . , n } containing the positions with letter a , b respectively.
(Sometimes it is convenient to assume that the position-sets of two
words u, v are disjoint; then one takes any two nonoverlapping seg-
ments of the integers as the position-sets of u and v . ) Let L be
the first-order language with equality and nonlogical symbols <,min,
m a x , S , P , Q , Q . . Then the satisfaction of an L- sentence tp in a word wa D * •
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EHRENFEUCHT-FRAISSE GAME

(written: w t= ip) can be defined in a natural way, and we say that
L c: A is defined by the L-sentence tp if L == {w € A Iw^ ip} .

For example, the language L= (ab) is defined by

Q min A Q,max A Vy (y < max -• (Q y ̂  Q,S ( y ) ) ) .

As usual, a I,-formula is a formula in pr.enex normal form with a pre-
fix consisting of k alternating blocks of quantifiers, beginning
with a block of existential quantifiers. A B (£,)-formula is a boolean
combination of £,-formulas.

1 .1 Theorem. (Thomas ( 1 9 8 2 ) ) . Let k>0. A language L <= A belongs to
B iff L is defined by a B(£)-sentence of L.

For the formalization of properties of words the symbols min,max,S,P
are convenient. But of course they are definable in the restricted
first-order language L,. with the nonlogical constants <,Q ,Q, alone.u a JD
Indeed, we have:

1 .2 Lemma. Let k>0 . If L <= A is defined by a B (I,)-sentence of L,
then L is defined by a B (Z,^ )-sentence of L .

Proof. The quantifier-free kernel of a Z,-formula tp of L can be ex-
pressed both by a £..- and a n,--formula of L/.. For example, Q S(min)
is expressible in the following two ways:

(+) 3y(y=S(min) A Q^y) , Vy(y=S(min) -» Q^y)

where y = S (min) is rewritten as a II.-formula of L.. using

x = min <(—^ V z ( x = z v x < z ) , x = max <(-* V z ( z = x v z < x )
S (x) = y -^ (x = max A x = y ) v ( x < y A Vz~l (x < z A z < y) ) .

Hence we obtain a £, .-sentence of L- which is equivalent (in all
word-models) to tp by applying one of the two definitions in (+), dep-
ending on the case whether the innermost quantifier-block of cp is

existential or universal.

We mention without proof that (for k >0) the B(Z,)-sentences of L..
define exactly those languages L c: A which occur on the k-th level
of another hierarchy of star-free regular languages, introduced by
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Straubing ( 1 9 8 1 ) . For details concerning the Straubing hierarchy and
its relation to the Brzozowski hierarchy cf. Pin ( 1 9 8 4 a , b ) . The proof
to be given below also shows that the Straubing hierarchy is infinite.

2. The Example Languages

In order to show that B, ^ B , , for k > 1 , we introduce "example langu-
ages" L^rL^, L^ over A = { a , b } .

Let I w l (resp. I w l , ) denote the number of occurrences of the lettera -o
a (resp. b) in w , and define the weight l l w l l of a word w by

llwll I w l - I w l ,a b

In the sequel we write vcw if the word v is an initial segment

(left factor) of w . Let

L, = {wEA ' 1 " ! llwll = 0, V v c w 0<llvll <k, 3vcw llvll = k} ,

L^ = { w G A ' ^ ' 1 llwll = k, Vvcw 0<llvll <k} ,
.K

L = { w C A4 llwll = -k, Vvcw -k < llvll <0} .

To obtain a more intuitive picture of these languages, it is useful
to represent the letter a by the stroke / and b by \ . Then the
word abababa, for example, is represented by /\/\/\/ . Thus L^ con-
tains all words whose "graph" has the following properties: It ends
on the same level where it starts ("level O " ) , it is confined to level
0 and the next k levels, and it assumes the k-th level at least
once. Similarly for L 4', L, . The "typical shape" of words in L^, L^,
L," is indicated in the following diagrams:

level k i ^ ^

level 0

'k
14



EHRENFEUCHT-FRAISSE GAME

We now state the main result:

2 . 1 Theorem. For all k > 1 : L € B - 8 .

The proof is split into lemmas 2 .2 and 2.3.

2.2 Lemma. For all k > 1 : L € B .
K. K.

Proof. By induction on k we show that L,,L,, L, € B, . Concerning

k = 1 , it is clear that L, = (ab) , L. = (ab)*a, L = b ( a b ) * ; hence we can
define

L. by (aA* n A*b) - (A*aaA* u A*bbA*),

L4' by (aA* n A*a) - (A*aaA* u A*bbA*),

L" by (bA* n A*b) - (A*aaA* u A*bbA*) .

Observing that, e.g., A*aaA* =aauaaA uA aauA aaA , we see that
all three languages belong to B.. - Similarly one obtains, for k > 1 ,

L = (L.aA* n A*bL,) - (A*aL,aA* U A*bL,bA*),

^+1 = ^i^A* n ^a^) - (A*aL^aA* u A*bL^bA*) ,

L, = (L~bA* n A*bL,) - (A*aL+aA* U A*bL,bA*).

By induction hypothesis, L,, L, , L. £ B , ; hence, using the elimination

of A* as above, we have I'^+i^ L'k+^r ^+1 e Bk+1 *

2 .3 Lemma. For all k > 1: L, $ B .

Proof. For k = 1 , the result is clear since (ab) is neither finite

nor cofinite. By 1 . 1 , it suffices to show for k > 2 that L is not

defined by a B (Z,_.)-sentence of L. Using 1 . 2 , it is sufficient to

prove:

(*) For every k > 2 : L, is not defined by a B (Z,)-sentence of L^.

Let us write

u = k v iff u and v satisfy the same B(Z,)-sentences ofn K

L^ in which only prefixes with <n quantifiers occur.

We shall verify, for k > 1 , the claim
^

(*) , For every n>k there are words u € L , v ( L, with u = v.
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Then in particular for any k > 2 and n > k , a B (£,)-sentence of L in
K. 0

which only prefixes with <n quantifiers occur cannot define L , , and
hence (*) is proved.

k kThe words u,v required in (*) , for given n will be denoted u , v .k n n
Together with auxiliary words w they are defined as follows:

^ = (ab)2n ' ^= u ia% ' ̂ -v^ '
^ - M) 2 n . ̂  - ̂  ̂  . ̂  - u;r1 ̂ +1 •

(To distinguish superscripts from exponents, the latter are applied
only to words in brackets.) The graphs of the first words look as fol-
lows (where n = 2 ) :

u^: AA/V\ , v^: /vW^^ , w^= /VV^Vv^^^

u^: VSA^A^^^^SAA^W^ '̂̂ ^^NA^VVVWS^^

k kFrom the definition it is immediate that u € L , , v ( L, . Hence the
proof of the main theorem 2.1 is completed when we have shown

(**) ^ ^ v^n n n
for 1 < k < n . A proof is given in the next section.

3. The Ehrenfeucht-Fraisse Game G-.————————————————————————————m

For the proof that two words are ^-equivalent (as required in (**)
above) it is convenient to consider a slight refinement of this notion.

For a sequence m = ( m . , . . . , m , ) of positive integers, where k > 0 , let
length (m) = k and sum(m) = m.+. . .+m,. The set of m-formulas (of L )
is defined by induction on length(m): If length(m) = 0, it is the set
of quantifier-free L -formulas; and for m = ( m , m . , . . . , m , ) , an m-for-
mula is a boolean combination of formulas 3x....x tp where tp is an
(m. , . . . ,m.)-formula. We write u =- v if u and v satisfy the samei K. m
m-sentences. Clearly we have:

3.1 Remark. If u s- v for all m with length (m) = k and sum(m) = n,
then u s^ v.n
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We now describe the Ehrenfeucht-Fraisse game G - ( u , v ) which is useful
for showing "--equivalence. (We restrict ourselves here to the case
of word-models for L^; however, all considerations could easily be
adapted to arbitrary relational structures.)

The Game G - ( u , v ) , where in = ( m . , . . . , m , ) , is played between two playersm i K
I and II on the word-models u and v ; we assume that the position-
sets of u and v are disjoint. We write <11 to denote the <-relation
in u ; Q f Q ^ f ^ f O ^ f Q ^ . are used similarly. A play of the game consistsa D a D
of k moves. In the i-th move player I chooses, in u or in v , a
sequence of m. positions; then player II chooses, in the remaining
word (v or u) , also a sequence of m. positions. Before each move,
player I has to decide whether to choose his next elements from u or
from v . After k moves, by concatenating the position-sequences
chosen from u and chosen from v , two sequences p = p . . . . p from
u and q = q . . . . q from v have been formed where n = m . + . . . + m , .
Player II has won the play if the map p . l-» q . respects < and the pre-
dicates Q^/Q^ ( i . e . P^P- iff q^q • . Q̂ \ iff ^a<3iy ̂ i iff ̂i for

1 < i , j < n ) . Equivalently, the two subwords in u and v given by the
position-sequences p and q should coincide. If there is a winning
strategy for II in the game (to win each play) we say that II wins
G - ( u , v ) and write u ̂ _ v.

The standard Ehrenfeucht-Fraisse game is the special case of G^(u,v)
where in = ( 1 , . . . , 1 ) . (For a detailed discussion cf. Rosenstein ( 1 9 8 2 ) . )
If length (in) = k and in = ( 1 , . . . , 1 ) we write G ^ ( u , v ) instead of G^(u,v)
and u ~, v instead of u ~- v. Note that in this case the m-formulask m
are (up to equivalence) just the formulas of quantifier-depth k . In
the familiar form the Ehrenfeucht-Fraisse Theorem states (for the case
of word-models) that u and v satisfy the same L -sentences of
quantifier-depth k iff u ~, v. An analogous proof yields the result
for in-sentences and ~- (cf . Fraisse ( 1 9 7 2 ) , where the terminology of
partial isomorphisms is used instead of game-theoretical notions):
3.2 Theorem. For all in = ( m . , . . . , m ^ ) with k>0 and m^ > 0 for
i = 1 , . . . , k , we have u s- v iff u ̂ m v- _
Hence, in view of 3 . 1 , we can prove the claim ( * * ) of the preceding
section (and thus the main result 2 . 1 ) by showing
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3 . 3 Lemma. For 0<k<n and any m with length ( m ) = k and sum(m) = n,
k k - k k
^ ~m ̂  and ̂  -in V

As a preparation for the proof we state some basic properties of ~-
and ~^:

3. 4 Lemma.
( a ) ~- is an equivalence relation.m
( b ) If n>sum(m) and u~ v, then u ~_ v.
( c ) If u ̂ - v and u* ~- v ' , then uu' -̂ v v ' .

Parts ( a ) , ( b ) are immediate from the definition of G ( u , v ) and G - ( u , v ) .
For the proof of ( c ) note that player II can combine the two given
winning strategies on u,v and on u ' , v ' in the obvious manner to ob-
tain a winning strategy on u u * , v v ' : As far as the initial segments u
and v are concerned, the first given strategy is to be used, simi-
larly for the final segments u ' . v ' the second given strategy.
The following lemma is a familiar exercise on the game:

3 . 5 Lemma. If m.m'> 211 - - \ , then ( w ) m -̂  ( w ) 1 1 1 ' .
Proof. Consider the natural decomposition of u = ( w ) " 1 and v = (w)111

into w-segments. Before each move we have in u and v certain w-seg-
ments in which positions have been chosen, and others where no posi-
tions have been chosen. Call a maximal segment of succeeding w-segments
without chosen positions a gap. (A gap may be empty.) Before each move
there is a natural correspondence between the gaps in u and v
(given by their order). II should play according to what we call the
2 ̂strategy, namely guarantee the following condition before each move:
When i elements are still to be chosen by both players, two corres-
ponding gaps should both consist of any number >2 -1 of w-segments,
or else should both consist of the same number ( <2 - 1 ) of w-segments.
By induction on n-i it is easy to see that II always can choose his
w-segment in this manner (c f . Rosenstein ( 1 9 8 2 ) , p . 9 9 ) ; of course,
inside his w-segment, II should pick exactly that position which mat-
ches the position chosen by I in the corresponding w-segment.

k 211Since any word u as defined in §2 is of the form ( w ) , we note as a
consequence of 3 . 5 :
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3.6 Remark. For 1 < k < n: u^ ~ u^.
————————— n n n n
We now turn to the

Proof of 3.3. By induction on k we show u1^ ~- v^" and u^" ~- w1^ for
_ _ n m n n m n

any m with length(m) = k and sum(m) < n.

If k = 1 we deal with the game involving one move in which^n elements
are chosen by both players. Let us consider

1 2" 1 211 ?11

u^ = (ab)- , v^ = (ab)~ a (ab)" .

Since in both words u^ and v^ all possible words over {a,b} of length

n occur as subwords, any subword specified by I through his choice of

n positions in one word can also be realized by II in the remaining

word by n corresponding positions. Hence there is a winning strategy
for II. The proof for u and w is analogous.

T,
In the induction step we write u for u and consider the wordsn

k+1 211 k+1 211 211
u = (uauubu) , v = (uauubu) a (uauubu)

Given a sequence (m,in) with length (m,in) = k + 1 and sum (m,in) < n, we
k+1 k+1

have to show u ~(m in) v ' using as induction hypothesis

(a) u -^ uau (= v^") , (b) u — ubu (= w^") .

(In an analogous manner it will be possible to show u + ~(^ n)^ • )

k+1 k+1
In order to verify u^ ~(m in) v ' it is convenient to apply 3 .4 (a) ,
(b) and consider two different words instead which are ~ -equivalent

k+1 k+1 k+1 ^to u , v respectively: Instead of u we take

2" 211

( 1 ) (uauubu) uauubu (uauubu)

k+1 1<+1which is ~ -equivalent to u by 3.5. Concerning v , we use 3.6 in

order to duplicate (several times) the u-segments next to the central

letter a there; thus we obtain the ~ -equivalent word

( 2 ) (uauubu)2 uau (u)^1 (uauubu)2 .

For the proof of ( 1 ) ~,^ ^ (2) we distinguish the two cases that I

first picks m positions from ( 1 ) or I first picks m positions
from (2) . ^


