Meémoires

de la SOCIETE MATHEMATIQUE DE FRANCE

Numéro 182 GLOBAL IN TIME
Nouvelle série STRICHARTZ INEQUALITIES
ON ASYMPTOTICALLY

FLAT MANIFOLDS

WITH TEMPERATE TRAPPING

J-M. BOUCLET & H. MIZUTANI
2 0 2 4

SOCIETE MATHEMATIQUE DE FRANCE




Comité de rédaction

Boris ADAMCZEWSKI
Frangois CHARLES
Gabriel DOSPINESCU
Béatrice de TILLIERE
Clotilde FERMANIAN

Francois DAHMANTI (dir.)

Dorothee FREY
Youness LAMZOURI
Wendy LOWEN
Ludovic RIFFORD

Diffusion
Maison de la SMF AMS
Case 916 - Luminy P.O. Box 6248
13288 Marseille Cedex 9 Providence RI 02940

France USA

commandes@smf .emath.fr WWW.ams.org

Tarifs
Vente au numéro : 42 € ($63)
Abonnement électronique : 128 € ($192)
Abonnement avec supplément papier : 220 €, hors Europe : 265 € ($397)
Des conditions spéciales sont accordées aux membres de la SMF.

Secrétariat
Mémoires de la SMF
Société Mathématique de France
Institut Henri Poincaré, 11, rue Pierre et Marie Curie
75231 Paris Cedex 05, France
Tél : (33) 01 44 27 6799 e Fax : (33) 01 40 46 90 96

memoires@smf.emath.fr e http://smf.emath.fr/

© Société Mathématique de France 2024

Tous droits réservés (article L 122—/ du Code de la propriété intellectuelle). Toute représentation ou
reproduction intégrale ou partielle faite sans le consentement de l’éditeur est illicite. Cette représen-

tation ou reproduction par quelque procédé que ce soit constituerait une contrefagon sanctionnée par
les articles L 335-2 et suivants du CPIL.

ISSN papier 0249-633-X; électronique : 2275-3230
ISBN 978-2-85629-996-8
doi:10.24033/msmf .490

Directeur de la publication : Fabien DURAND



http://smf.emath.fr/

MEMOIRES DE LA SMF 182

GLOBAL IN TIME
STRICHARTZ INEQUALITIES
ON ASYMPTOTICALLY FLAT MANIFOLDS
WITH TEMPERATE TRAPPING

Jean-Marc Bouclet
Haruya Mizutani

Société Mathématique de France 2024



J.-M. Bouclet
Université Paul Sabatier, IMT - UMR CNRS 5219, F-31062 Toulouse Cedex 9.

E-mail : jean-marc.bouclet@math.univ-toulouse.fr

H. Mizutani
Department of Mathematics, Graduate School of Science, Osaka University,
Toyonaka, Osaka 560-0043, Japan.

E-mail : haruya@math.sci.osaka-u.ac.jp

Soumis le 4 mai 2018 ; révisé le 15 juin 2022 ; accepté le 29 mars 2023.

2000 Mathematics Subject Classification. — 35Q41, 35Q55, 35R01, 42B25, 42B37,
58J40.

Key words and phrases. — Strichartz inequalities, Schrédinger equation, asymptoti-
cally conic manifolds, scattering theory.

Mots clefs. — Inégalités de Strichartz, équation de Schrédinger, variétés asymptotique-
ment coniques, théorie de la diffusion.




GLOBAL IN TIME STRICHARTZ INEQUALITIES
ON ASYMPTOTICALLY FLAT MANIFOLDS
WITH TEMPERATE TRAPPING

Jean-Marc Bouclet, Haruya Mizutani

Abstract. — We prove global Strichartz inequalities for the Schrédinger equation on a
large class of asymptotically conical manifolds. Letting P be the nonnegative Laplace
operator and fy € C§°(R) be a smooth cutoff equal to 1 near zero, we show first
that the low frequency part of any solution e~*Fuyg, i.e., fo(P)e~ " ug, enjoys the
same global Strichartz estimates as on R™ in dimension n > 3. We also show that the
high energy part (1 — fo)(P)e~ " uq also satisfies global Strichartz estimates without
loss of derivatives outside a compact set, even if the manifold has trapped geodesics
but in a temperate sense. We then show that the full solution e~%Fu, satisfies global
space-time Strichartz estimates if the trapped set is empty or sufficiently filamentary,
and we derive a scattering theory for the L? critical nonlinear Schrédinger equation
in this geometric framework.

Résumé (Inégalités de Strichartz globales en temps sur des variétés asymptotiquement
plates a capture tempérée)

Nous démontrons des inégalités de Strichartz pour I’équation de Schrédinger sur
une grande famille de variétés asymptotiquement coniques. Si P est I’opérateur de La-
place et fy € C§°(R) une fonction de troncature égale a 1 prés de zéro, nous montrons
d’abord que la partie basse fréquence de toute solution e~#Fuyg, i.e., fo(P)e " uy,
satisfait les mémes inégalités de Strichartz que sur R™, en dimension n > 3. Nous mon-
trons également que la partie haute fréquence (1 — f)(P)e~ " uq vérifie également
des inégalités de Strichartz sans perte de dérivée a ’extérieur d’un compact, méme si
la variété posséde des géodésiques captées mais dans un sens tempéré. Nous montrons
ensuite que la solution compléte e~*Fuq satisfait des inégalités de Strichartz globales
en espace-temps & condition que I’ensemble capté soit vide ou suffisamment fin, et
nous obtenons une théorie de la diffusion pour I’équation de Schrédinger non linéaire
L? critique dans ce contexte géométrique.

(© Mémoires de la Société Mathématique de France 182, SMF 2024
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CHAPTER 1

INTRODUCTION AND MAIN RESULTS

In the past ten or fifteen years, a lot of activity has been devoted to study Strichartz
inequalities on manifolds. We recall that these inequalities were stated first on R™ for
the wave equation [37] and then the Schrodinger one [21]; for the Schrédinger equation
and a pair (p,q) € [2,00] X [2, 0], they read

2

; . n n
||u||Lp(R,Lq) 5 ||u0||L27 U(t) = eztAu(h if ];+ E = 57 (nypa Q) 7é (2,2,00)

(A pair (p, q) satisfying the last two conditions is called Schrodinger admissible.) The
strong interest on Strichartz inequalities is mainly related to their key role in the
study of nonlinear dispersive equations (see, e.g., [12, 38]).

On compact manifolds these estimates may be different from those on R"”, either
due to the strong confinement leading to derivative losses for the Schédinger equation
[10] (the L? norm of initial data is replaced by some Sobolev norm) or to the absence
of global in time estimates (if initial data are eigenfunctions the solutions are periodic
in time).

One may ask to which extent the estimates on R" still hold on noncompact mani-
folds, at least in the class of asymptotically flat ones. For the Schrédinger equation,
the only one considered from now on, this problem was considered in several arti-
cles for local in time estimates [36, 35, 22, 7, 30]. From the geometrical point of view,
those papers consider stronger and stronger perturbations, namely from compactly
supported perturbations of the flat metric on R™ to long range perturbations of con-
ical metrics on manifolds. We refer to Definition 1.1 for a description of long range
asymptotically conical metrics but point out here that long range perturbations are
natural in that it is the only type of decay which is invariant under a change of radial
coordinates (see [5]).

Global in time estimates for long range perturbations are considerably more deli-
cate to obtain and have been considered in fewer papers [39, 28, 23] (see also [8] with
a low frequency cutoff).

To prove global Strichartz inequalities on curved backgrounds, one has to face two
difficulties. The first one, which does not happen on R", is the possible occurring of
trapped geodesics (geodesics not escaping to infinity, in the future or in the past).
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2 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

This trapping is only sensitive at high frequencies and may affect the estimates by a
loss of derivatives. However, if it is sufficiently weak, one can still expect Strichartz
estimates without loss as shown in [11] locally in time. Trapping is already a problem
for local in time estimates hence a fortiori for global in time ones.

The second difficulty stems in the analysis of low frequencies. Indeed, except in a
few model situations such as R™ or flat cones [20] where the fundamental solution of
the Schrédinger equation can be computed explicitly, the only robust strategy acces-
sible so far is to localize the solution in frequency, e.g., by mean of a Littlewood-Paley
decomposition, and then to prove Strichartz estimates for the spectrally localized com-
ponents by using microlocal techniques to derive appropriate dispersive estimates. Due
to the uncertainty principle, low frequency data cannot be studied purely by microlo-
cal techniques and thus require additional non trivial estimates. On R™ (or a pure
cone), one may use a global scaling argument to reduce the analysis of low frequency
blocks to the study at frequency one, but this is in general impossible on manifolds.

The first breakthrough on global in time Strichartz estimates was done by Tataru in
[39] where he considered long range and globally small perturbations of the Euclidean
metric, with C? and time dependent coefficients. In this framework, no trapping could
occur. The results were then improved in [28] by allowing more general perturba-
tions in a compact set, including some weak trapping. Recently, Hassell-Zhang [23]
partially extended those results by considering the general geometric framework of
asymptotically conic manifolds and including very short range potentials, but using
a non-trapping condition.

In the present paper, we improve on those references in the following directions.
On one hand, we consider a class of asymptotically conic manifolds which is larger
than the one of Hassell-Zhang, and contains all usual smooth long range perturbations
of the Euclidean metric. More importantly, we allow the possibility to have trapped
trajectories and, assuming this trapping to be temperate (assumption (1.5)), show
that the solutions to the linear Schrédinger equation enjoy the same global in time
estimates without loss as on R™ outside a large enough compact set. This fact is a
priori not clear at all since, by the infinite speed of propagation of the Schrédinger
equation, one may fear that the geometry and the form of the initial datum inside
a compact set has an influence on the solution all the way to spatial infinity. This
question was considered first in [7] locally in time and then in [28] globally in time case
but our approach in this paper allows to deal with much stronger types of trapping
than in this last reference (see the discussion after Theorem 1.3).

As a byproduct of this analysis, we derive global space-time Strichartz estimates
without loss if there is no trapping (thus recovering the results of Hassell-Zhang for a
larger class of manifolds, when there is no potential) or if the trapping is filamentary
in the sense of [33, 11]. In particular, we extend to the global in time case one of the
results of [11].

Then, we apply these estimates to the scattering theory of the L? critical nonlinear
Schrodinger equation with small data on a manifold with filamentary (or empty)
trapped set (Theorem 9.1).

MEMOIRES DE LA SMF 182



CHAPTER 1. INTRODUCTION AND MAIN RESULTS 3

From the technical point of view, an important part of our paper is devoted to con-
struct tools adapted to the analysis of low frequencies. In particular, along the way,
we develop a new version of the Isozaki-Kitada parametrix for long range metrics. Re-
call that the Isozaki-Kitada parametrix was introduced on R™ to study the scattering
theory of Schrédinger operators with long range potentials [24]. One of the new fea-
tures of our parametrix is the treatment of low frequencies which, to our knowledge,
does not seem to have been much considered before, up to the reference [16] in the
context of scattering by potentials on R™ which is very different from ours (especially
at low energy). We derive related L? propagation estimates which are needed in the
present paper but can be of interest for other questions of scattering theory, such
as the study of scattering matrices at low energy. In a more directly oriented PDE
perspective, the methods developed in this paper also allow to handle other dispersive
models like fractional equations [18].

Let us now state our results more precisely.

Let (M, G) be an asymptotically conic manifold, possibly with a boundary, i.e.,
a manifold diffeomorphic away from a compact set to a product (R, +00) X S, for
some closed Riemannian manifold (S, g), such that G is a long range perturbation of
the exact conical metric dr? +r2g. To state a precise definition, we denote by I'(T?S)
the space of (p, q) tensors on S, i.e., sections of (Q” T'S) @ (RQ? T*S), and for a given
smooth map e = e(r) defined on (R4, +00) with values in T'(T7S), we will note

eec SV <— Npq (8£e(r)) < <r>_”_j

for each semi-norm N, of I'(TPS) and j > 0. If (0y,...,60,_1) are local coordi-
nates on S, this means equivalently that e is a linear combination of terms of the
form ezll:_'_'f: (r,0)db;, ® -+ ® db;, ® Dp;, ® -+ ® Op, such that, for each j and o, we
have an estimate |8ﬁ8§‘efif§’ (r,0)] < (r)="=7 locally uniformly in 6 (see also the
paragraph Standard symbol classes in Chapter 2). Here (-) is the standard Japanese
bracket.

DEFINITION 1.1. — A Riemannian manifold (M, G) is asymptotically conic if it is
connected and if there exist a continuous and proper function r : M — [0,400),
a compact subset K € M and a closed Riemannian manifold (S,g) such that for
some Rpq > 0 there is a diffeomorphism

Q: M\K23mw— (r(m),w(m)) € (Rap,+00) X S

through which
G = Q" (A(r)dr® + 2rB(r)dr + r?g(r)),

where A(r) € T(T9S), B(r) € T(TYS) and g(r) € T(T98S) is a Riemannian metric
on S such that, for some v > 0,

(1.1) A—1eS%,  BeS™ g()-gesS™

If A=1 and B =0, one says the metric G is in normal form.
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4 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

Without loss of generality, we will assume that G is in normal form (see Ap-
pendix A). This plays no role in the present introduction but will be useful in later
chapters.

Everywhere in the sequel, we denote by LI(M) or just L? the Lebesgue spaces
associated to the Riemannian measure on M. We let P be the Friedrichs extension
of —Ag on L?(M), namely the unique selfadjoint realization if M has no boundary
or the Dirichlet one if M is not empty. One interest of our geometric framework is
that, if n > 3, we have a Sobolev estimate

" 2n
(1.2) 0]l 2= oty SIP 20l 22 () 2" =

n—2’
for all v in the domain of P'/2 (see Appendix C for a proof).
For ug € L2(M), we let u(t) := e~ ®Fuq be the solution to the Schrédinger equation

10su — Pu = 0, uf,_, = Uo-

Let fo € C§°(R) be such that fo = 1 on [—1,1] and split u(t) = wiow(t) + Unign(t)
according to low and high frequencies, i.e.,

(1.3) Wow (t) = fo(P)e " ug, Unigh(t) = (1 — fo)(P)e™ " uy.

THEOREM 1.2 (Global space-time low frequency estimates). — Assume that n > 3
and let (p,q) be a Schrédinger admissible pair. Then there exists C > 0 such that, for
all ug € L3(M),

(1.4) l[w1ow | L2 ;L1 (M) < Clluoll L2 (-
Notice that in this theorem 0M may be empty or not.
Proof. — Section 8.2. O

THEOREM 1.3 (Global in time high frequency estimates at spatial infinity). — Assume
that n > 2 and that for some M > 0 large enough, we have for all x € C° (M)

(1.5) IX(P = X£i0)"'xllL2(my—r2my Sx AY, A= 1
Then there exists R > 1 such that for any Schrédinger admissible pair (p,q) there
exists C > 0 such that
(1‘6) ||1{r>R}Uhigh||Lp(1R;Lq(M)) < CHUO”LZ(M)a
for all ug € L*(M).

If we recast the global in time estimates at spatial infinity of [28, Theorem 1.5] in
our framework, these authors show that

11{r> Ry Unigh |l Lr (r;£o) Sllwol 22 + | 1{r< Ry Unighll L2 (R;£2)

where the last term can be controlled by |lug||z2 thanks to (1.5) if M < 0 (the usual
non-trapping case is M = —1/2) but not clearly otherwise. In our result, the right
hand side of (1.6) does not involve any corrective term depending on u and holds for
any M.
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CHAPTER 1. INTRODUCTION AND MAIN RESULTS 5

Note that examples of situations where bounds of the form (1.5) hold include
[33, 14] in some trapping geometries and, of course, the non-trapping case [42].

We also remark that, as in Theorem 1.2, the boundary of M does not need to be
empty but this observation is less relevant here for we consider estimates near infinity.

Theorems 1.2 and 1.3 reduce the proof of Strichartz estimates on u to estimates
on lg.<Rryunigh- The interest is that it is relatively easy to plug some results or tech-
niques proved locally in space to derive global estimates. Here we consider the classi-
cal example of a non trapping manifold, but also include the case of weakly trapping
geodesic flow.

Let T C T*M be the trapped set of the geodesic flow and n(7) € M be its
projection onto the base space. We need the following condition on 7.

AsSUMPTION 1.4 (Weak trapping condition). — We assume the following conditions
introduced in [11]:
— the manifold (M, G) is a scattering manifold (29, 15],

— there exists an open set M_ C M containing w(T) which can be extended
to a complete manifold with sectional curvatures bounded above by a negative
constant,

— M_ is geodesically convez in the sense that any geodesic entering 7~ (M\ M_)
remains in this region thereafter,

— the topological pressure P(s) of the trapped set T satisfies P(1/2) < 0.
We refer to [33, Section 3.3| for details on the topological pressure P(s).

THEOREM 1.5 (Global spacetime estimates without loss). — Assume that n > 3 and
OM is empty. If either

— the geodesic flow is non-trapping and (p,q) is any Schrodinger admissible pair,
— assumption 1.4 is satisfied and (p, q) is any non endpoint Schridinger admissible
pair
then there exists C' > 0 such that

(1.7) lull r &;La )y < Clluoll 2 (),
for all ug € L*(M).

This theorem improves on the result of [23] in two directions: Hassell-Zhang only
consider the non-trapping case and, even in the non-trapping situation, we consider
more general types of ends. It also provides a global in time version of the estimates
of [11].

We state this result in the boundaryless case in order to give complete proofs or
references. We emphasize however that using the techniques of [25] it can certainly
be extended to the case when M has a strictly geodesically concave boundary and is
non-trapping for the associated billiard flow
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6 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

We recall finally the well known fact that inhomogeneous Strichartz estimates,
for non endpoint pairs, can be derived from the homogeneous ones (1.7) by using
the Christ-Kiselev Lemma [13]; this is sufficient for the applications to the nonlinear
equations studied in Section 9.

Here is the plan of our paper. In Chapter 2, we record notation about charts,
partitions of unity, scaling operators, etc. that will be used in further chapters. In
Chapter 3, we describe the pseudo-differential calculus adapted to our framework,
including a rescaled one for low frequency estimates which is not quite standard. In
Chapter 4, we prove Littlewood-Paley decompositions at low and high frequencies. In
Chapters 5 and 6, we construct an Isozaki-Kitada parametrix for the microlocalized
Schrédinger group, both at high and low frequencies. We use it in Chapter 7 to derive
some L? propagation estimates to be used in Chapter 8 where the theorems stated in
this introduction are proved. Finally, in Chapter 9, we give nonlinear applications of
our Strichartz estimates.
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