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STOCHASTIC ISENTROPIC EULER EQUATIONS

BY FLORENT BERTHELIN AnND JuLiEN VOVELLE

ABSTRACT. — We study the stochastically forced system of isentropic Euler equations of gas dy-
namics with a y-law for the pressure. We show the existence of martingale weak entropy solutions; we
also discuss the existence and characterization of invariant measures in the concluding section.

RESUME. — Nous étudions le systéme d’Euler des gaz isentropiques, pour une loi de pression
en pY, avec un forgage stochastique. Nous prouvons I’existence de solutions martingales vérifiant des
inégalités entropiques. Nous discutons également de I'existence et de la caractérisation de mesures
invariantes dans la section de conclusion.

1. Introduction

In this paper, we study the stochastically forced system of isentropic Euler equations of
gas dynamics with a y-law for the pressure.

Let (2, o7, P, (o). (Bk(¢))) be a stochastic basis, let T be the one-dimensional torus,
let T > 0andset Q7 := T x (0, T). We study the system

(1.1a) dp + dx(pu)dt =0, in Qr,
(1.1b) d(pu) + 3x(pu® + p(p))dt = @(p,u)d W(t), in Or,
(1.1c) P = po. PU = poUo, in T x {0},
where p follows the y-law

(12 P(o) = xp. k= Qy—z p=""1

for y > 1, W is a cylindrical Wiener process and ®(0, u) = 0. Therefore the noise affects the
momentum equation only and vanishes in vacuum regions. Our aim is to prove the existence
of solutions to (1.1) for general initial data (including vacuum), cf. Theorem 2.1 below.
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182 F. BERTHELIN AND J. VOVELLE

There are to our knowledge no existing results on stochastically forced systems of first-
order conservation laws, with the exception of the papers by Kim, [50], and Audusse,
Boyaval, Goutal, Jodeau, Ung, [2]. In [50] the problematic is the possibility of global exis-
tence of regular solutions to symmetric hyperbolic systems under suitable assumptions on
the structure of the stochastic forcing term. In [2] is derived a shallow water system with
a stochastic Exner equation as a model for the dynamics of sedimentary river beds. On
second-order stochastic systems, and specifically on the stochastic compressible Navier-
Stokes equation (1, different results have been obtained recently, see the papers by Breit,
Feireisl, Hofmanova, Maslowski, Novotny, Smith, [36, 11, 10, 66] (see also the older work
by Tornare and Fujita, [68]).

The incompressible Euler equations with stochastic forcing terms have been studied in
particular by Bessaih, Flandoli, [5, 8, 6, 7], Capinski, Cutland, [16], Brzezniak, Peszat, [14],
Cruzeiro, Flandoli, Malliavin, [24], Brzezniak, Flandoli, Maurelli, [12], Glatt-Holtz and
Vicol, [41], Cruzeiro and Torrecilla, [25]. We refer in particular to [41] for results in space
dimension 3.

In the deterministic case, and in space dimension 1, the existence of weak entropy solu-
tions to the isentropic Euler system has been proved by Lions, Perthame, Souganidis in [54].
Let us mention also the anterior papers by Di Perna [32], Ding, Chen, Luo [31], Chen [20],
Lions, Perthame, Tadmor [58]. The uniqueness of weak entropy solutions is still an open
question.

For scalar non-linear hyperbolic equations with a stochastic forcing term, the theory has
recently known a lot of developments. Well-posedness has been proved in different contexts
and under different hypotheses and also with different techniques: by Lax-Oleinik formula
(E, Khanin, Mazel, Sinai [35]), Kruzhkov doubling of variables for entropy solutions (Kim
[51], Feng, Nualart [37], Vallet, Wittbold [70], Chen, Ding, Karlsen [21], Bauzet, Vallet,
Wittbold [4]), kinetic formulation (Debussche, Vovelle [28, 29]). Resolution in L! has been
given in [30]. Let us also mention the works of Hofmanova in this fields (extension to second-
order scalar degenerate equations, convergence of the BGK approximation [45, 27, 46]) and
the recent works by Hofmanova, Gess, Lions, Perthame, Souganidis [56, 55, 57, 39, 40, 47]
on scalar conservation laws with quasilinear stochastic terms.

We will show existence of martingale solutions to (1.1), see Theorem 2.1 below. The proce-
dure is standard: we prove the convergence of (subsequence of) solutions to the parabolic
approximation to (1.1). For this purpose we have to adapt the concentration compactness
technique (cf. [32, 54]) of the deterministic case to the stochastic case. Such an extension
has already been done for scalar conservation laws by Feng and Nualart [37] and what we
do is quite similar. The mode of convergence for which there is compactness, if we restrict
ourselves to the sample variable w, is the convergence in law. That is why we obtain martin-
gale solutions. There is a usual trick, the Gyongy-Krylov characterization of convergence in
probability, that allows to recover pathwise solutions once pathwise uniqueness of solutions
is known (cf. [43]). However for the stochastic problem (1.1) (as it is already the case for the
deterministic one), no such results of uniqueness are known.

(M Which, to be exact, is first-order in the density and second-order in the velocity.
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A large part of our analysis is devoted to the proof of existence of solutions to the
parabolic approximation. What is challenging and more difficult than in the deterministic
framework for the stochastic parabolic problem is the issue of positivity of the density. We
solve this problem by using a regularizing effect of parabolic equations with drifts and a
bound given by the entropy, quite in the spirit of Mellet, Vasseur, [59], cf. Theorem A.1. Then,
the proof of convergence of the parabolic approximation (3.1) to Problem (1.1) is adapted
from the proof in the deterministic case to circumvent two additional difficulties:

1. there is a lack of compactness with respect to w; one has to pass to the limit in some
stochastic integrals,

2. there are no “uniform in ¢” L* bounds on solutions (here ¢ is the regularization
parameter in the parabolic problem (3.1)).

Problem 1. is solved by use of convergence in law and martingale formulations, Problem 2.
is solved by using higher moment estimates (see (3.10) and (3.11)—(3.12)). We will give more
details about the main problematic of the paper in Section 2.4, after our framework has been
introduced more precisely. Note that Problem 2. also occurs in the resolution of the isentropic
Euler system for flows in non-trivial geometry, as treated by Le Floch, Westdickenberg, [53].

2. Notations and main result

2.1. Stochastic forcing

Our hypotheses on the stochastic forcing term ®(p, u)W(t) are the following ones. We
assume that W = ), Brex where the B are independent Brownian processes and
(ex)x>1 18 a complete orthonormal system in a Hilbert space 4. For each p > 0, u € R,
®(p,u): U — L?(T) is defined by

(21) (D(p, M)ek = Uk('» ,o,u) = pa];k('v pvu)’
where o/ (-, p,u) is a 1-periodic continuous function on R. More precisely, we assume

oy € C(Ty x Ry x R) and the bound

1/2
(2.2) G(x.p,u) = (Z |ak(x,p,u)|2) < op[1 40+ 2]
k>1
forallx € T, p > 0, u € R, where A is some non-negative constant. Depending on the
statement, we will sometimes also make the following localization hypothesis: for » > 0,
denote by z = u — p?, w = u + p? the Riemann invariants for (1.1) and by A, the domain

(2.3) Ay ={(p,u) e Ry xR;—x <z <w < x}.

We will establish some of our results (more precisely: the resolution of the approximate
parabolic Problem (3.1)) under the hypothesis that there exists » > 0 such that

24 supp(G) C Tx x Ay.
We define the auxiliary space Uy C 4 by
aZ
2.5) o = {v = Zakek; k—’; < oo},
k>1 k>1
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