
ASTÉRISQUE452

2024

EVOLUTION OF NETWORKS
WITH MULTIPLE JUNCTIONS

Carlo MANTEGAZZA, Matteo NOVAGA,
Alessandra PLUDA & Felix SCHULZE

SOCIÉTÉMATHÉMATIQUE DE FRANCE



Astérisque est un périodique de la Société mathématique de France
Numéro 452, 2024

Comité de rédaction

Marie-Claude ARnaud
Christophe BReuil
Eleonora Di Nezza
Colin GuillaRmou
Alessandra Iozzi
Éric Moulines

Alexandru Oancea
Nicolas RessayRe
Rémi Rhodes
Sylvia SeRfaty
Sug Woo Shin

Antoine ChambeRt-LoiR (dir.)

Diffusion
Maison de la SMF

B.P. 67
13274 Marseille Cedex 9

France
christian.smf@cirm-math.fr

AMS
P.O. Box 6248

Providence RI 02940
USA

www.ams.org

Tarifs

Vente au numéro : 60€ ($80)
Abonnement : Europe : 665€ ; hors Europe : 718€ ($1 077)

Des conditions spéciales sont accordées aux membres de la SMF.

Secrétariat

Astérisque
Société Mathématique de France

Institut Henri Poincaré, 11 rue Pierre et Marie Curie
75231 Paris Cedex 05, France

Fax : (33) 01 40 46 90 96
asterisque@smf.emath.fr • http://smf.emath.fr/

©Société Mathématique de France 2024

Tous droits réservés (article L 122-4 du Code de la propriété intellectuelle). Toute représentation ou reproduction
intégrale ou partielle faite sans le consentement de l’éditeur est illicite. Cette représentation ou reproduction par
quelque procédé que ce soit constituerait une contrefaçon sanctionnée par les articles L 335-2 et suivants du CPI.

ISSN : 0303-1179 (print) 2492-5926 (electronic)
ISBN : 978-2-85629-997-5
doi : 10.24033/ast.1225

Directeur de la publication : Isabelle Gallagher



ASTÉRISQUE452

2024

EVOLUTION OF NETWORKS
WITH MULTIPLE JUNCTIONS

Carlo MANTEGAZZA, Matteo NOVAGA,
Alessandra PLUDA & Felix SCHULZE

SOCIÉTÉMATHÉMATIQUE DE FRANCE



Carlo Mantegazza
Dipartimento diMatematica eApplicazioni, Università diNapoli Federico II,Napoli, Italy
carlo.mantegazza@unina.it

Matteo Novaga
Dipartimento di Matematica, Università di Pisa, Pisa, Italy
matteo.novaga@unipi.it

Alessandra Pluda
Dipartimento di Matematica, Università di Pisa, Pisa, Italy
alessandra.pluda@unipi.it

Felix Schulze
Mathematics Institute, University of Warwick, Coventry, United Kingdom
felix.schulze@warwick.ac.uk

Texte soumis le 4 juin 2018, accepté le 18 juillet 2023.

Mathematical Subject Classification. — 53E10, 35K51, 35B40.
Keywords. Geometric evolutions, Networks, Singularities.
Mots-clefs. Évolutions géométriques, Réseaux, Singularités.

carlo.mantegazza@unina.it
matteo.novaga@unipi.it
alessandra.pluda@unipi.it
felix.schulze@warwick.ac.uk


EVOLUTION OF NETWORKSWITHMULTIPLE JUNCTIONS

by Carlo MANTEGAZZA, Matteo NOVAGA,
Alessandra PLUDA & Felix SCHULZE

Abstract. — We consider the motion by curvature of a network of curves in the
plane and we discuss existence, uniqueness, singularity formation, and asymptotic
behavior of the flow.

Résumé. (Évolution des réseaux à jonctions multiples) — On considère le mouve-
ment par courbure d’un réseau de courbes dans le plan et on discute de l’existence,
l’unicité, la formation des singularités et le comportement asymptotique du flux.
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CHAPTER 1

INTRODUCTION

In this work we give an overview of the state-of-the-art of the motion by curvature of
planar networks of curves, collecting known results and showing several new ones.

Figure 1.1: A planar network of curves in a convex domain.

The problem, proposed by Mullins [12] and discussed first in [12, 16, 17, 47, 63], at-
tracted the interest of many authors in recent years [10, 15, 21, 34, 42, 51, 58, 62, 76,
77, 80, 82, 83, 89, 94–97, 106]. One strong motivation to study this flow is the anal-
ysis of models of two–dimensional multiphase systems, where the problem of the
dynamics of the interfaces between different phases arises naturally. As an example,
the model where the energy of a configuration is simply given by the total length of
the interfaces has proven useful to describe the growth of grain boundaries in a poly-
crystalline material (see [12, 47, 63] and http://mimp.materials.cmu.edu).
A second motivation is more theoretical: the evolution by curvature of such a net-
work of curves is the simplest example of mean curvature flow of a set which is es-
sentially singular. To consider such flow not only for smooth submanifolds but also
for non–regular sets, several generalized (weak) definitions of the flow have been in-
troduced in the literature [2, 16, 25, 35, 56, 101]. Anyway, while the smooth case was
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2 CHAPTER 1. INTRODUCTION

largely studied and understood (even if still not completely), the evolution of gener-
alized submanifolds, possibly singular (for instance varifolds), has not been analyzed
in great detail.
In his seminal paper, K. Brakke [16] proved the existence of a global (very) weak so-
lution, in a geometric measure theory context, called “Brakke flow”. Recently, the work
of Brakke has been improved by L. Kim and Y. Tonegawa [62] (see also [105]) in the
case of the evolution of grain boundaries in Rn (which reduces to the evolution of
networks when n = 2). They proved a global existence theorem and also showed
that there exists a finite family of open sets moving continuously with respect to the
Lebesgue measure, whose boundaries coincide with the space–time support of the
flow (for further results, see also the papers by K. Kasai and Y. Tonegawa [60] and
Y. Tonegawa and N.Wickramasekera [106]). Finally, in [61], Kim and Tonegawa also
proved a regularity result for 1–dimensional Brakke flows, showing that for almost
all times, the evolving network consists of a finite number of embedded curves of
class W2,2, meeting at junctions with angles of 60 or 120 degrees or with a common
tangent.
For another global existence result in any codimension and with special regularity
properties, obtained adapting the elliptic regularization scheme of T. Ilmanen [55,
56], we refer to the work of the last author and B. White [98]. Despite these recent
improvements, Brakke’s definition is anyway apparently too weak (possibly too gen-
eral) if one is interested in a detailed description of the flow.
A completely different definition of evolution is instead based on the so-called mini-
mizing movements: an implicit time–discrete variational scheme introduced in [2, 71]
(see also [14, 18, 26]). In this context, another discretization scheme was developed
and studied by S. Esedoglu and F. Otto [34], T. Laux and F. Otto [68, 69] (we motion
also the more recent development [36]).
Finally, wemention the “level set” approach tomotion by curvature by L. C. Evans and
J. Spruck [35] or, alternatively, Y. G. Chen, Y. Giga, and S. Goto [22], unfortunately not
suitable for the motion of networks since if at least a multi–point is present then an
interior region immediately develops (the so-called “fattening” phenomenon).
Even if all these approaches provide a globally defined evolution, the possible con-
clusions on the structure and regularity of the moving networks are actually quite
weak. To obtain a detailed description of the evolution and of the singularity forma-
tion, we tried to work in the smooth setting as much as possible. The definition of the
flow is then the first problem one has to face, due to the contrast between such desire
and the intrinsic singular geometric nature of a network. Consider for instance the
network described by two curves crossing each other, forming a 4–point. There are
actually several possible candidates for the flow: one cannot easily decide how the
angles must behave, moreover, it could also be allowed the four concurrent curves
to separate into two pairs of curves moving independently of each other and/or we
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CHAPTER 1. INTRODUCTION 3

could take into account the possible “birth” of new multi–points from such a single
one (all these choices are possible with Brakke’s definition). Actually, one would
like a good/robust definition of curvature flow giving uniqueness of the motion (at
least for “generic” initial networks) and forcing the evolving network, by an “instanta-
neous regularization” effect, with the possible exception of some discrete set of times,
to have only triple junctions with the three angles between the concurring curves of
120 degrees. This last property (which was experimentally observed for the growth
of grain boundaries) is usually called Herring condition. These expectations are sus-
tained also by the variational nature of the problem since this evolution can be consid-
ered as the “gradient flow” in the “space of networks” of the Length functional, which
is the sum of the lengths of all the curves of the network (see [16]). It must anyway
be said that such a space does not share a natural linear structure and such a “gradi-
ent” is not actually awell-defined “velocity” vector driving themotion at themultiple
junctions, in general. However, it follows that every point of a network different from
itsmulti–pointsmustmovewith a velocitywhose normal component is the curvature
vector of the curve it belongs, in order to decrease the Energy of the network (that is,
the total length here) “most efficiently” (see [16]). From this “energetic” point of
view, it is then natural to expect also that configurations with multi–points of order
greater than three or 3–points with angles different from 120 degrees, being unstable
for the length functional, should be present only in the initial network or that they
should appear only at some discrete set of times, during the flow. This property is
suggested also by numerical simulations and physical experiments, see [12, 17, 47,
63] and the grain growth movies at http://facstaff.susqu.edu/brakke. One may
hope that some sort of “parabolic regularization” could play a role here: for instance,
if a multi–point has only two concurrent curves, it can be easily shown (see [4, 6, 7,
46]) that the two curves become instantaneously a single smooth curve moving by
curvature.
We mention that actually, it is always possible to find a Brakke flow sharing such
property at almost every time (see [16]), by the variational spirit of its definition
which is the closest to the “gradient flow” point of view. However, as uniqueness
does not hold in this class, there are also Brakke flows starting from the same initial
network which keeps their multi–points, or loose the connectedness of the network:
for instance, a 4–point can “open” as in the right side of Figure 12.1, or separate in
two no more concurring curves, or it can “persists” to be a 4–point where the two
“crossing” curves move independently. Anyway, as we said, Brakke’s definition is
too “weak” if one is interested in a detailed description of the flow.
By this discussion it is then natural, due to their expected relevance, to call regular
the networks with only 3–points and where the three concurrent curves form angles
of 120 degrees. Then, following the “energetic” and experimental motivations men-
tioned above, we simply impose such regularity condition in the definition of a smooth

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024

http://facstaff.susqu.edu/brakke


4 CHAPTER 1. INTRODUCTION

curvature flow, for every positive time (at the initial time it could fail). If the ini-
tial network is regular and smooth enough, we will see that this definition leads to
an almost satisfactory (in a way “classical”) short–time existence theorem of a flow
by curvature. Trying instead to let evolve an initial non–regular network, various
complications arise related to the presence of multi–points or of 3–points not satis-
fying the Herring condition. Notice also that, even starting with an initial regular
network, we cannot avoid to deal also with non–regular networks when we analyze
the global behavior of the flow. Indeed, during the flow, some of the triple junctions
could “collide” along a “vanishing” curve of the network, when the length of the
latter goes to zero (hence, modifying the topological structure of the network). In
this case one has to “restart” the evolution with a different set of curves, possibly
describing a non–regular network, typically with multi–points of order higher than
three (consider, for instance, two 3–points collapsing along a single curve connect-
ing them) or even with “bad” 3–points with angles between the concurring curves,
not all equal to 120 degrees (think of three 3–points collapsing together with the “tri-
angular” region delimited by three curves connecting them). A suitable short–time
existence (hence, “restarting”) result for this situation has beenworked out in [58] by
T. Ilmanen, A. Neves and the fourth author and in [70] by J. Lira, R. Mazzeo, M. Saez
and the third author. In these papers, it is indeed shown that starting from any non–
regular network (with a natural technical hypothesis), there exists a “satisfactory”
flow of networks by curvature which is immediately regular and smooth, for every
positive time. Chapter 11 is devoted to this topic.
The existence problem of a curvature flow for a regular network with only one 3–point
andfixed end–points, called triod (seeDefinition 3.2), was first consideredbyL. Bronsard
and F. Reitich in [17]. To be precise, they consider as initial datum any regular C2+2α

triod satisfying some compatibility conditions at the triple junctions and show short–
time existence and uniqueness in the parabolic class C2+2α,1+α. In [63] D. Kinderlehrer
and C. Liu proved the global existence and convergence of a smooth solution if the initial
regular triod is sufficiently close to a minimal (Steiner) configuration.
After introducing regular networks, their flow by curvature, and some basic proper-
ties (Sections 2 and 2.3), we extend, in Chapter 3, the above well–posedness theorem
to general regular networks (Theorem 3.25). Moreover, we also show an analogous
result in suitable Sobolev spaces (Theorem 3.6).
In Chapter 4 we generalize to any regular network the integral estimates proved
in [82] for a triod, which are needed to prove Theorem 5.8 and will be actually used
throughout the whole paper. A consequence of such estimates is the fact that if the
lengths of the curves are bounded away from zero, as t goes to the maximal time T of
existence of the flow, the maximum of the modulus of the curvature must go to +∞
(Corollary 4.15 and Theorem 5.7).
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CHAPTER 1. INTRODUCTION 5

The uniqueness of the flow is quite delicate. Indeed, by Theorem 3.25, we only have
that, for initial regular networks of class C2+2α having the sumof the curvatures of the
three concurring curves at every triple junction equal to zero, there is uniqueness in
the parabolic class C2+2α,1+α. In Chapter 5, by combining Theorems 3.6 and 3.25 (the
first mainly for the uniqueness, the second for the existence) we then show a result
of existence/geometric uniqueness for short time of the flow of an initial network of
class C2 (Theorem 5.8), in a subclass of the curvature flows which are simply C2 in
space and C1 in time. In the same section, we will also see that the classical property
of parabolic equations of instantaneous regularization of solutions for positive times
also holds for the motion by curvature of networks, in a suitable sense.
The rest of the paper is devoted to the long-time behavior of the flow. For the sake of
simplicity, in the following overview, we will restrict ourselves only to the behavior
in the interior of a convex domain of a network flowing by curvature with fixed end–
points on the boundary of such set, while in the whole paper also the behavior at the
boundary (hence, at the end–points of the network) is analyzed in the same detail.
In Chapter 7 we recall Huisken’s monotonicity formula for mean curvature flow
which holds also for the evolution of a network and we introduce the rescaling pro-
cedures to get blow–up limit networks (discussed in Chapter 8) at the maximal time
of smooth existence. Then, to “describe” the singularities of the flow one needs to
classify such possible blow–up limits. In some cases, arguing by contradiction with
geometric arguments, this “description” can be used to exclude at all the formation
of singularities. Key references for this method in the situation of a single smooth
closed curve are [3, 50, 52, 53]. The most relevant difference in dealing with net-
works is the difficulty in using the maximum principle, which in the case of closed
curves is the main tool for getting pointwise estimates on the geometric quantities
during the flow. For this reason, some crucial estimates which are straightforward in
such case are here much more difficult to obtain and we had to resort to the integral
estimates of Chapter 4 (see also Section 10.3), which are similar to the ones in [3, 6,
7, 54], but require some extra work to deal with the triple junctions.
One can reasonably expect that an embedded regular network does not develop singu-
larities during the flow if its “topological structure” does not change (for instance, in
the case of a “collision” of two or more 3–points). Our analysis in Sections 8, 9 and 10
will show that if no “multiplicities” larger than one occur in the blow–up limit networks,
this expectation is indeed true. Under the assumption that the lengths of the curves are
bounded away from zero the only possible blow–up limits (withmultiplicity one by hy-
pothesis) are either a straight line, a halfline, or a flat unbounded regular triod (called
“standard triod”) composed of three halflines through the origin of R2 forming angles
of 120 degrees (see Proposition 8.30 and Chapter 10). Then, a local regularity theorem
for the flow (shown in [58]) together with such classification excludes the presence of
singularities. This result, which is in the spirit of White’s local regularity theorem for
mean curvature flow in [110], is presented in detail in Chapter 9.
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6 CHAPTER 1. INTRODUCTION

Thus, again in Chapter 10, we try to understand what happens at the maximal time,
knowing that some lengths of the curves composing the network cannot be uniformly
bounded away from zero, hence at least two 3–points get closer and closer.
First of all, we prove that under the hypothesis of multiplicity one of the blow–up lim-
its, if more than two triple junctions go to collide, then necessarily an entire region (the
interior of a “loop” of the network) vanishes, which implies that the curvature is nec-
essarily unbounded getting close to the singular time. Hence, if the curvature stays
bounded it must happen that (locally) we are in the case of two triple junctions (only)
going to collide along a vanishing curve, forming a 4–point in the limit. Vice versa, we
are then able to show that in such a situation the curvature remains bounded. As a
consequence, we conclude that the curvature is uniformly bounded along the flow if
and only if no region is collapsing and that in such case only local vanishing of single
curves can happen, with a formation of a 4–point in the limit. This is clearly particularly
relevant if the evolving network is a tree, that is, regions are not present at all. More in
detail, we first show that in such case, as t goes to the maximal time T, the networks
St converge in C1–norm (up to reparametrization) to a unique limit set ST which is a
degenerate (collapsed) regular network (see Definition 8.1), that is, a smooth network
possibly with multi–points of order higher than three and some collapsed parts “hid-
den” in its vertices. Then, we show that ST can have only 3–points with angles of 120
degrees or 4–points with angles of 120/60 degrees, like in the left side of Figure 10.1.
In the other situation, when the curvature is not bounded and a region collapses
(Section 10.3), we are able to obtain a weaker conclusion. Assuming the uniqueness
of the blow–up limit along any sequence of rescalings (which can be insteadproved in
the above case), we can show that, as t → T, the network St converges to some degen-
erate (see above) regular network, whose “non–collapsed” part ST is a C1, possibly
non–regular, network which is smooth outside its multi–points and whose curvature
is of order o(1/r), where r is the distance from its non–regular multi–points.
In several steps of the previous analysis the assumption of multiplicity one of the
blow–up limits is fundamental, we actually conjecture (Conjecture 10.1) that it holds
in general, but up to now we can prove it only in some special cases. Indeed, in
Chapter 14 we discuss a scaling invariant, geometric quantity associated with a net-
work, first proposed in [49] (see also [52]) and later extended in [15, 82, 89], consist-
ing in a sort of “embeddednessmeasure”which is positivewhen no self–intersections
are present. By a monotonicity argument, we show that this quantity is uniformly
positively bounded below along the flow, under the assumption that the number of
3–points of the network is at most two. As a consequence, in such case every possible
C1

loc–limit of rescalings of the networks of the flow is an embedded networkwithmul-
tiplicity one. We underline that it is not clear to us how to obtain a similar conclusion
for a general network with several triple junctions, since the analogous quantity, if
there are more than two 3–points, does not satisfy a monotonicity property.
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CHAPTER 1. INTRODUCTION 7

In Chapter 11 we state a short–time existence result for possibly non–regular initial
networks (that is, with multi–points of order greater than 3 and/or non–regular 3–
points), giving a flow that is immediately regular and smooth for every positive time.
This result, which clearly also provides a “restarting theorem”, was worked out inde-
pendently in [58] by T. Ilmanen, A. Neves and the fourth author (Theorem 11.9) and
in [70] by J. Lira, R. Mazzeo, M. Saez and the third author (Theorem 11.26), here we
only give an outline of the arguments in the proofs (which are quite technical). The
idea in Theorem 11.9 is to locally desingularize the multi–points and the non–regular
3–points via regular self–similarly expanding solutions. The argument hinges on a
new monotonicity formula, which shows that such expanding solutions are dynam-
ically stable, using the fact that the evolution of curves and networks in the plane
are special cases of the Lagrangian mean curvature flow (these ideas have already
been exploited by A. Neves in the papers [84–86]). Theorem 11.26 relies instead on
blow–up arguments from geometric micro–local analysis. In this case, the same regu-
lar self–similarly expanding solutions naturally arise from the underlying geometric
structure of the problem.
In Chapter 12 it is explained how to combine Theorem 11.9with the previous analysis
of the singularities in order to continue the flow after a singular time. Then, we ana-
lyze the preserved geometric quantities and the possible changes in the topology of a
network in passing through a singularity. This is applied in Chapter 13 to study the
long-time behavior of the flow, indeed, the restarting procedure allows us to define
an “extended” curvature flow with singularities at an increasing sequence of times.
An important open question is whether the maximal time interval of existence of
such flow is finite or not, where the main problem is the possible “accumulation” of
the singular times (if they are not finite, which actually we do not know). We men-
tion that in the special case of symmetric networks with only two triple junctions,
it can be shown that the set of singular times is necessarily finite, see [88]. Clearly,
if such “extended” flow can be defined for every time (as the Brakke flow obtained
by L. Kim and Y. Tonegawa in [62]), we ask ourselves if the network converges, as
t → +∞, to a stationary network for the length functional (a Steiner network). In
Proposition 13.6 we prove the convergence up to a subsequence of the family of the
evolving networks to a possibly degenerate one (some curves could disappear in the
limit), as t → +∞. If we then assume that such limit network is not degenerate,
with the help of Łojasiewicz–Simon gradient inequality, we are actually able to prove
the full convergence of the flow, in Theorem 13.11. We finally conclude Chapter 13
presenting a stability result: if a network is sufficiently close in W2,2–norm to a reg-
ular network S∗ composed of straight segments only, its motion by curvature exists
for all times and smoothly converges to a regular network still composed of straight
segments and with the same length of S∗.
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Up to now, the study of the behavior of the flow at the first singularity (and immedi-
ately after) is essentially complete when the network has at most two triple junctions,
see [76, 80, 82, 89], holding in this very special case the above mentioned multiplicity
one conjecture, as it is shown in Chapter 14. In Chapter 15 we will describe, up to the
best of our knowledge, the global evolution of such “simple” networks, which are
actually interesting since most of the relevant phenomena of the general case are al-
ready present. In particular, wewill see that the evolution of a tree–like networkwith
only one 3–point and three fixed end–points (called triod) is smooth and asymptoti-
cally converges to a Steiner network, if the lengths of the three curves stay uniformly
bounded away from zero.
The last section of the paper is devoted to collecting and presenting the main open
problems. Moreover, by courtesy of T. Ilmanen, we include an appendix with pic-
tures and computations of several examples of regular shrinkers, due to him and
J. Hättenschweiler.
We conclude this introduction by mentioning that there are several interesting vari-
ants and generalizations of the problem of the motion by curvature of networks
whose study is only at the beginning. For instance, one can consider the anisotropic
version of the flow, as in [13, 45, 64] and/or take into account the mismatch of the
orientation of the grain in the model [32, 33, 59].
The analogous problem in higher dimensions (and codimensions) is stillwidely open.
Besides the papers [62, 98], where a global weak solution in the Brakke sense is con-
structed, the short–time existence of a smooth and regular solution in three dimen-
sions has been established in [28] in some special cases and in [98, Section 7] for the
motion of a network in Rn with only triple junctions. In these cases, the analysis
of singularities and the subsequent possible restarting procedure are still open prob-
lems.
We also mention the works [37, 38] where a graph evolving by mean curvature and
meeting a horizontal hyperplane with a fixed angle of 60 degrees is studied. By con-
sidering the union of such graph with its reflection through the hyperplane, one gets
an evolving symmetric lens–shaped domain. We remark that in this particular case,
the analysis is simpler since the maximum principle can be applied.
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