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LINEAR MODELS FOR REDUCTIVE

GROUP ACTIONS ON AFFINE QUADRICS

PAR

MICHAEL DOEBELI (*)

RESUME. — Nous etudions les actions des groupes reductifs sur les quadriques
affines complexes dont Ie quotient est de dimension 1. Une telle action est dite
linearisable si elle est equivalente a la restriction d'une action lineaire orthogonale
dans Pespace affine ambiant de la quadrique. Une action lineaire satisfait a certaines
conditions topologiques. Nous recherchons si ces conditions sont valables pour des
actions generales. Si c'est Ie cas, il est naturel de se demander si une action donnee
possede un modele lineaire, c'est-a-dire si il existe une action lineaire avec les memes
types d'orbites et avec des representations slices equivalentes. Nous montrons qu'un
modele lineaire existe si 1'action a un point fixe ou si Ie groupe d'isotropie principal
est connexe. Enfin, nous faisons une classification de toutes les actions lineaires dont
Ie quotient est de dimension 1.

ABSTRACT. — We study reductive group actions on complex affine quadrics with
1-dimensional quotient. Such an action is called linearizable if it is equivalent to the
restriction of a linear orthogonal action in the ambient affine space of the quadric.
A linear action on the quadric satisfies certain topological conditions. We examine
whether these condititons also hold for general actions. In case they do it is natural to
ask whether a given action has a linear model, i.e., whether there is a linear action with
the same orbit types and equivalent slice representations. We show that a linear model
exists if the action has a fixed point or if the principal isotropy group is connected.
Finally, we classify all linear actions with 1-dimensinal quotient.

1. Introduction

1.1. - Let Qn •= {(^...,^+1) C C^ | Si\2 = ^ C C^
denote the n-dimensional affine quadric over the field of complex num-
bers C. Let G be a (linear) algebraic group. Every orthogonal represen-
tation p : G —^ On+i(C) determines an action of G on Qn. These actions
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— we call them linear actions — are well understood. Of course, the
geometry of the situation does not change if we replace a given action
by a conjugate one within the group Aut Qn of algebraic automorphisms
of Qn- We call an action of G on Qn linearizable if it is conjugate to a
linear action of G on Qn'

1.2. — The case n = 1 is easy. Here

Qi ^ C - C \ {0} and Aut Qi ^ C* x ̂  = 02,

and so every group action is linear. The situation changes dramatically
for n > 2. In these cases Aut Qn can be given the structure of an infinite
dimensional algebraic group, see [11]. More is known only for n = 2 where
this group can be written as an amalgamated product, see [10, p. 94].
The following example illustrates that Aut Qn is indeed very big even for
small n and shows that unipotent group actions need not be linearizable.
Consider Qs, which we identify with SL2(C). Choose a (7-invariant regular
function f on SL2(C), where U denotes the subgroup of matrices with Fs
in the diagonal and 0 in the lower left entry. Consider the following action
of the additive group C~^~ on SLs :

t . h ' - ( 1 tf^}^^1 -tfw}' "'- ^0 1 ) h {O 1 ) '

where t € C~^ and h C SL2. We claim that this action is not linearizable
as soon as / is not a constant. In fact, the linear actions of C~^~ on SLa
are easily classified. Under the double cover SLs x SL^ —> SO^ the
S04-action on Q^ corresponds to the action of SL^ x SLa on SLa given
by (^; 9 ' ) ' h = 9^9'~ • Thus a linear action C"*" —> 804 on Q^ is given by the
corresponding morphism C"^ —> SL^ x SL^ as an action on SLs. It follows
that such an action must be equivalent to either the trivial action, the one
given by conjugation or the one given by left (or right) multiplication. It is
now straightforward that of these only the trivial action or the one given
by conjugation can be equivalent to the action defined above, and that
such an equivalence is only possible if the function / is constant.

1.3. — Because of the previous example we restrict our attention
to reductive groups (7, i.e., to groups which don't have any non-trivial
unipotent normal subgroups. (Equivalently, every rational representation
of G is completely reducible.)

Linearization problem : Is every action of a reductive group on an affine
quadric linearizable ?
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So far no example of a non-linearizable reductive group action on Qn
is known. However, we do not believe that every such action is lineari-
zable, except under certain «smallness» assumptions. For example, every
reductive group action on Q^ is linearizable. This follows from the struc-
ture theorem for Aut Q^ mentioned above. We will show among other
things that linearization is possible for actions for which the only inva-
riant regular functions on Qn are the constants, see § 2. Therefore, the
classification of these cases is achieved by classifying all orthogonal re-
presentations (V, G) for which the ring of invariant functions Ofy)0 is
generated by the invariant quadratic form.

1.4. — In case linearization holds the G-action has to satisfy certain
topological conditions, e.g. the generic orbit of G on X = Qn has to be
closed. Moreover, every slice representation (TVa;, G^) has to be orthogonal,
where x C X is a point on a closed orbit, Gx is the stabilizer of x and
7V^ = TxX/TxGx is the normal space to the orbit. This follows from the
fact that these properties hold for orthogonal representations, see [22, § 5].
This leads to the following

DEFINITION. — An orthogonal representation (V, G) is called a linear
model for an action of G on the quadric X = Qn if X has the same orbit
types and equivalent slice representations as the quadric

Qv •= {veV | (v,v) = 1} C V

with the linear G-action.

1.5. — The aim of this paper is to study the topology of a connected
reductive group action on an affine quadric X under the assumption that
the ring of invariants has (Krull-) dimension 1, i.e., that the algebraic
quotient X//G (see 1.9) is 1-dimensional. It turns out that for our results
it is enough to assume that X is an irreducible, smooth affine variety
which is homotopy equivalent to a real sphere.

PROPOSITION 1. — Under the assumptions above we have :

(1) X//G ̂  A, the affine line.

(2) There are two points yi,y2 ^ A such that the principal stratum
^A\{^/i,7/i}.

(3) The generic fiber of the quotient map (i.e., the fiber over the
principal stratum) is a G-orbit, which means that the generic orbit
is closed.

This is proved in sections 3.2 and 3.4.
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1.6. — The results in PROPOSITION 1 are obvious for linear actions on
quadrics, or, more generally, if there is a linear model. We believe that
the assumptions in 1.5 insure the existence of a linear model. However,
we have been able to prove existence only under additional hypotheses.

PROPOSITION 2. — Under the assumptions of 1.5 a linear model exists
in the following cases :

(1) The G-action on X has a fixed point.
(2) The principal isotropy group of the action is connected, and the

dimension of the slice representations is > 2.

This is proved in sections 4.8 and 4.9.

1.7. — The analogous situation of compact group actions on real
spheres has been studied extensively. For example, BOREL, MONTGOMERY
and SAMELSON classified all transitive compact group actions on spheres
(see [19], [2] and [3]). The case of orbit space dimension 1 has been
analyzed by WANG [25] and ASOH [1]. Their results are essential in our
approach.

1.8. — We have been guided by the work of KRAFT, LUNA and
SCHWARZ on the linearization problem for reductive group actions on affine
space C71. In this classical setting the question is whether a given action is
equivalent to a representation, and these authors have tackled the problem
under the assumption that the quotient dimension is equal to 1, see [14]
and [16]. (Note that actions with quotient dimension 0 are linearizable
by Luna's slice theorem.) They first prove with topological methods the
existence of a fixed point and then compare the tangent representation
at this point with the given action. Although linearization holds in
many cases, the first non-linearizable actions on C71 were discovered by
SCHWARZ [23] in this context. Moreover, using the results of SCHWARZ,
KNOP [12] proved that every non-commutative, connected reductive group
has non-linearizable actions on some C71. Our approach to the linearization
problem on quadrics is the analogon to the one taken in [16]. There the
fixed point gives a linear model as the tangent representation at this point.
Here we have to carry the topological analysis much further to show that
a linear model exists. In section 5.1 we classify all these models, i.e., all
linear actions on quadrics with 1-dimensional quotient. This classification
will be used in a subsequent paper to show that the existence of a linear
model suffices to prove that linearization holds.

1.9. — To conclude this introduction, we state the conventions and
notation valid in this paper as well as some general facts. Our varieties
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