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Entropy in operator algebras 

b y Erling StOrmer 

1 Introduction 
While entropy has for a third of a century been a central concept in ergodic theory, 
its non-Abelian counterpart is still in its adolescent stage with only a few signs of 
mature strength. The signs, however, are promising and show a potential of a subject 
of importance in operator algebras, so much that I am glad to use this opportunity to 
take the reader on a guided tour of its ideas and their resulting definitions and theorems. 
I have also included some open problems with the hope that they may inspire further 
development of the subject into maturity. In addition to giving the necessary definitions 
I shall mainly be concerned with explicit formulas for entropy of automorphisms. I shall 
therefore not discuss entropy of endomorphisms and completely positive maps, nor will 
I say much about applications to physics. 

There is another very promising approach to non-Abelian entropy which we shall 
not discuss but is presently persued by Voiculescu [32,33]. The definitions are quite 
different from the ones we shall give, but the values of the entropies are closely related 
to ours in nice cases, but are essentially different in general, see section 5. 

2 Definitions and basic results 
Before we embark on the non-Abelian definition of entropy let us recall the classical 
definition. We are then given a probability space (X, 0 , fi) and a nonsingular measure 
preserving transformation T of X. If V = ( P i , . . . , Pn) is a measurable partit ion of X 
we shall often identify it with the finite dimensional Abelian algebra generated by the 
characteristic functions Xp{. The entropy of V is 

H(P) 
n 

t=l 
n(u(Pi)), 

where TJ is the real function on the unit interval, rj(t) = —tlogt for t G (0,1], and 
7/(0) = 0. If WQ is the partition generated by two partitions V and Q then H(WQ) < 
H(V) + H(Q), so we have convergence of the sequence 

1 
H 

kt=0 

T - i v 
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We denote by H(T, V) its limit, and define the entropy of T by 

H(T) = sup H(T,V), 
v 

(2.1) 

where the sup is taken over all finite measurable partitions. The crucial result for 
computing H(T) is the Kolmogoroff-Sinai Theorem [34, 4.17]. 

T h e o r e m 2 .2 . If V is a generator, i.e. the a-algebra generated by (T lV)iez equals 
oo 

B, written V T~'V = B, then H(T) = H(T,V). 
— C O 

There is another version of this theorem which will be of interest in the sequel [34, 
4.22]. 

C O 

T h e o r e m 2 .3 . If (Vn)ne^ is an increasing sequence of partitions of X with \¡ Vn — B 
n=l 

then 
H(T) = lim H(T,Vn). 

If one wants to extend the above definition of entropy to von Neumann algebras one 
is immediately confronted with a major obstacle. While there is a natural extension of 
the concept of finite partitions, namely finite dimensional von Neumann algebras, there 
is no natural candidate for the analogue of the partition V V Q generated by V and Q. 
Remember tha t the von Neumann algebra generated by two finite dimensional algebras 

can easily be infinite dimensional. However, if one considers the function H 
k 

t=l 
Pi 

with V{ finite partitions as a function H(Vi,..., Vk) of k-variables, one can try to 
generalize this function. This will now be done following [8] for a von Neumann algebra 
M with a faithful normal finite trace r such that r ( l ) = 1. In section 6 we shall see 
how this definition can be extended to general C*-algebras and states. 

For each A; £ N denote by Sk the set of multiple indexed finite partit ions of unity of 

M+, (^i1...tfc)t-€N? i-e- eacn xh...ik € zero except for a finite number of indices and 
satisfying 

i,...ik 
xi,...ik 1. 

For x e Sk,t € {! , . . . ,A;}, i¿ G N, we put 

xil 

t*i,...,t/_i,t/+i,...,tfc 
x*i—ik ' 

If N C M is a von Neumann subalgebra we denote by EN the unique r-invariant 

conditional expectation EN ' M —• N defined by the identity 

r(EN{x)y) = r (xy) , x e M, y e N. 
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Def in i t ion 2.4. Let N\,...,Nk be finite dimensional von Neumann subalgebras of 
M. Then 

H(Nu...,Nk) sup 
xesk i1,...,ik 

?(r(*.wJ) 
it 

¿=1 
T(V(ENt(x¡t))) 

Since the trivial partition x = (1) gives the value zero, if > 0. Also it is clear tha t if 
is symmetric in the JV's. Furthermore if satisfies the following nice requirements 

(A) H(NU ...,Nk)< H(Pit ...,Pk) when Nj C i > - , j = 1 , . . . , *. 

(B) # ( J V j , . . . , Nk) < H(NU...,Nj) + H(Nj+u..., Nk) for 1 < j < k. 

(C) Nlt..., N3 C N =• ( A r l f . . . , 7VJ5 i V i + 1 , . . . , JVfc) < H(N, N ] + 1 , N k ) . 

(D) For any family of minimal projections of AT, ( e a ) a G j such that ea = 1 one has 

H(N) 
iEI 

7 7 T ( e a ) . 

(E) If (Ni U • • • U Nk)ft is generated by pairwise commuting von Neumann subalgebras 
P4 of JV,- then 

H(Nu...,Nk) = H((N1\J...UNk)»). 

The crucial technical ingredient in the proof of the above properties, and in particu
lar of (C), is the relative entropy of two states, or rather positive operators in our case, 
defined by 

S(x\y) = r ( x ( l o g x - l o g y ) ) , x ,y G M , x < Xy 

for some A > 0. For general normal states of von Neumann algebras the relative entropy 
is defined by Araki [1] via the relative modular operator of the two states, and by Pusz 
and Woronowicz [25] for states of C*-algebras. The main property of S is tha t it is a 
jointly convex function in x and y [16], see also [15] and [25]. 

Having H it is now an easy matter to extend the classical definition (2.1) of entropy. 
We look at the measure preserving transformation T on ( X , # , / / ) as an automorphism 
ar of the Abelian von Neumann algebra L°°(X, B,fi) defined by ar(f) = f o T " 1 , and 
partitions as finite dimensional algebras. 

Def in i t ion 2.5 Let a be an automorphism of M such that r o a = r . I f N c M i s 
finite dimensional we let 

H(a,N) = lim j¡H(N,a(N),ak-\N)), 

where as in the classical case the sequence converges by the subadditivity of if, property 
(B). The entropy of a is 

H(a) = sup if (a , AT), 
N 

where the sup is taken over all finite dimensional subalgebras N C M. 
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R e m a r k 2.6. If P C M is a von Neumann subalgebra such that a(P) = P , it is 
immediate from the définition that the restriction a\P satisfies H(a\P) < H(a). 

R e m a r k 2.7. If a is periodic then H(a,N) = 0 for all AT, hence H(a) = 0. More 
generally, if a is contained in a compact subgroup of Aut (M) then Besson [2] has shown 
tha t we still have H(a) = 0. 

To compute H(a) it is as in the classical case necessary to reduce the choice of iV's. 
The following concept is helpful for this purpose. 

Def in i t ion 2 .8 . If N and P are finite dimensional von Neumann subalgebras of M 

their relative entropy is 

H(N\P) • SUp \(TTjEP(xi) - TT)EN(xi)). 

H(N\P) has the following nice properties: 

(F) H(Ni,... ,7V,) < H{PU...,Pk) + £ HiNAPj). 

(G) H{N\Q)<H(N\P) + H{P\Q). 

(H) H(N\P) is increasing in TV and decreasing in P. 

(I) If AT and P commute then 

H(N\P) = H((N U P ) " | P ) = H {H U P)" ) - H(P). 

Properties (F) , (G), (H) are easy to prove, while (I) is a consequence of the Lieb-Ruskai 
second strong subadditivity property [17]. The relative entropy is continuous in the 
following sense. 

T h e o r e m 2.9. For all n £ N and e > 0 there exists 6 > 0 such that for all pairs of 

von Neumann subalgebras N and P of M with dim AT = n, we have 

N CP=> H(N\P)<e. 

Here N C P means that for all x £ N, \\x\\ < 1, there exists y £ P with ||y|| < 1 such 

tha t \\x — y\\2 < 6, where | |z | | 2 = T ( Z * Z ) 1 / 2 . This result together with property (F) is 

very useful in restricting the choice of N in the definition of if ( a ) . An example is the 

proof of the generalization of the Kolmogoroff-Sinai Theorem (2.3). 

T h e o r e m 2 .10 . Suppose M is hyperfinite with an increasing sequence ( P n ) n e N of 

finite dimensional subalgebras with union weakly dense in M. Then if a £ Aut (M) 
and r o a — T we have 

# ( a ) = lim # ( a , P n ) . 
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