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SYMMETRIES OF THE NONLINEAR
SCHRÖDINGER EQUATION

by Benôıt Grébert & Thomas Kappeler

Abstract. — Symmetries of the defocusing nonlinear Schrödinger equation are ex-
pressed in action-angle coordinates and characterized in terms of the periodic and
Dirichlet spectrum of the associated Zakharov-Shabat system. Application: proof of
the conjecture that the periodic spectrum · · · < λ−

k ≤ λ+k < λ−
k+1 ≤ · · · of a Zakharov-

Shabat operator is symmetric, i.e. λ±
k = −λ∓

−k for all k, if and only if the sequence

(γk)k∈Zof gap lengths, γk := λ+k − λ−
k , is symmetric with respect to k = 0.

Résumé (Symétries de l’équation de Schrödinger non linéaire). — Les symétries de
l’équation de Schrödinger nonlinéaire sont exprimées dans les variables action-angles
et caractérisées à l’aide du spectre périodique et du spectre de Dirichlet du système
de Zakharov-Shabat associé. Comme application, nous démontrons la conjecture sui-
vante : le spectre périodique · · · < λ−

k ≤ λ+k < λ−
k+1 ≤ · · · de l’opérateur de Zakharov-

Shabat est symétrique, i.e. λ±
k = −λ∓

−k pour tout k, si et seulement si la suite (γk)k∈Z
des longueurs des intervalles d’instabilité, γk := λ+k − λ−

k , est symétrique par rapport
à k = 0.
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Nantes, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 03 (France)
E-mail : grebert@math.univ-nantes.fr • Url : http://www.math.sciences.univ-

nantes.fr/~grebert/

Thomas Kappeler, Institut für Mathematik, Universität Zürich, Winterthurerstrasse
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1. Introduction

The defocusing nonlinear Schrödinger equation NLS on the circle

(1.1) i ∂tϕ = −∂2xϕ+ 2|ϕ|2ϕ
can be viewed as a completely integrable Hamiltonian system of infinite dimen-
sion. Indeed, on the phase L2(S1;C), introduce the Poisson bracket

{F,G} := i

∫
S1

( ∂F

∂ϕ(x)
· ∂G

∂ϕ(x)
− ∂F

∂ϕ(x)
· ∂G

∂ϕ(x)

)
dx.

Equation (1.1) can then be written in Hamiltonian form as follows

∂ϕ

∂t
= {H, ϕ} = −i

∂H
∂ϕ

, ∂ϕ

∂t
= {H, ϕ} = i

∂H
∂ϕ

,

where the Hamiltonian H is given by (cf. [2])

H(ϕ) :=
∫

S1

(∣∣∣∂ϕ
∂x

∣∣∣2 + |ϕ|4
)
dx.

Consider the following symmetry operators, acting on L2(S1;C),

(1.2) S1(ϕ) := ϕ, S2(ϕ) = ϕ̌,

(1.3) Mαϕ := eiαϕ, Tτϕ := ϕ(τ + ·),
where ϕ̌ is defined by ϕ̌(x) = ϕ(−x). For convenience, we introduce S3 :=Mπ,
i.e. S3(ϕ) = −ϕ. Notice that the Hamiltonian H is invariant under S1,S2,Mα

and Tτ .
Denote by U(t) the solution operator of (1.1) for initial data in L2(S1;C) (or

some Sobolev space HN (S1;C)) (cf [1]). It is immediate that U(t) commutes
with S2,S3,Mα and Tτ and that

(1.4) U(t)S1 = S1U(−t).

Recall that NLS admits a Lax pair representation

dL
dt

= [L,A]

where L = L(ϕ) is the Zakharov-Shabat operator

(1.5) L(ϕ) := i
( 1 0
0 −1

) d
dx

+
( 0 ϕ
ϕ 0

)
and A is a (rather complicated) operator given in [2]. We remark that L(ϕ)
is unitarily equivalent to the well known AKNS-operator

(1.6) H(ϕ) :=
( 0 −1
1 0

) d
dx

+
(−q p

p q

)
where ϕ = −q + ip, a fact which will be used throughout the paper.
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Denote by specper L(ϕ) the periodic spectrum of L(ϕ) when considered on
the interval [0, 2] and by spec±Dir L(ϕ) the Dirichlet spectra of L(ϕ) when consid-
ered on the interval [0, 1] (cf. Definitions (2.5) and (2.6) below). The operator
L(ϕ) is selfadjoint when considered with periodic or Dirichlet boundary condi-
tions. Hence both specper L(ϕ) and specDir L(ϕ) are real.
By elementary considerations one shows that

specper L(ϕ) = − specper L(ϕ), specperL(̌ϕ) = − specper L(ϕ),

specper L(Mαϕ) = specper L(ϕ), specperL(Tτϕ) = specperL(ϕ)

and expresses spec+Dir L(Sjϕ) for j = 1, 2, 3 in terms of spec−Dir L(ϕ).
Recall from [7] (see also [8]) that NLS admits global Birkhoff coordinates.

Denote by �2(Z;R2) the space of �2-sequences (xj , yj)j∈Z endowed with the
canonical Poisson bracket {xi, xj} = 0, {yi, yj} = 0 and {xi, yj} = δij .

Theorem 1.1. — There exists a canonical diffeomorphism Φ

Φ : �2(Z;R2) −→ L2(S1;C)

such that
1) Φ is bianalytic;
2) the restriction of Φ to the weighted �2-space �2N (Z;R

2) (N ≥ 1) is a
diffeomorphism onto the Sobolev space HN(S1;C);
3) (xj , yj)j∈Z = Φ−1(φ) are Birkhoff coordinates for NLS and its hierarchy,

i.e. any Hamiltonian in the hierarchy is a function of the actions Ij := 1
2 (x

2
j +

y2j ) only.

In this article we use the explicit formulas for action and angle variables
given in [8] (see also [7]) to obtain

Theorem 1.2. — (i) The actions are left invariant by Mα and Tτ , i.e. for
any k ∈ Z

Ik(Mαϕ) = Ik(ϕ) and Ik(Tτϕ) = Ik(ϕ)

whereas Ik(ϕ) and Ik(ϕ̆) can be computed to be (j = 1, 2)

Ik(Sjϕ) = I−k(ϕ).

(ii) For k with Ik �= 0
θk(Mαϕ) ≡ θk + α (mod 2π),

θk(̌ϕ) ≡ θ−k(ϕ) (mod 2π),
θk(ϕ) ≡ −θ−k(ϕ) (mod 2π).

As a first application of Theorem 1.2 one obtains (cf. Proposition 4.1 in
Section 4 )
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Corollary 1.1. — When evaluated at I = (Ik)k∈Z with Ik = I−k for all
k ∈ Z, the NLS frequencies ω = (ωk)k∈Z , ωk = ∂H/∂Ik, are symmetric, i.e.
ωk(I) = ω−k(I) for all k ∈ Z.

The main motivation for proving Theorem 1.2 and Corollary 1.1 comes from
an application to a KAM type theorem established in [5] (see also [6]).

As a second application, Theorem 1.2 is used to prove that the periodic spec-
trum is symmetric if and only if the sequence of the gap lengths is symmetric,
a conjecture, raised by several experts in the field. More precisely, denote by

specper L(ϕ) =
(
λ±

k (ϕ)
)

k∈Z

the periodic spectrum of L(ϕ) when considered on the inverval [0, 2] where the
numbers λ±

k (ϕ) are ordered so that

λ−
k (ϕ) ≤ λ+k (ϕ) < λ−

k+1(ϕ)

and let γ(ϕ) := (γk(ϕ))k∈Z be the sequence of gap lengths,

γk(ϕ) := λ+k (ϕ)− λ−
k (ϕ).

In Section 4 we prove the following

Theorem 1.3. — For ϕ ∈ L2(S1;C), the following assertions are equivalent:

(i) λ±
k (ϕ) = −λ∓

−k(ϕ) for any k ≥ 0 ;
(ii) γk(ϕ) = γ−k(ϕ) for any k ≥ 1.

2. Symmetries and spectra

2.1. Periodic spectrum. — The periodic spectrum of the Zakharov-Shabat
operator L(ϕ) is given by

specper L(ϕ) :=
{
λ ∈ C | ∃F ∈ H1

loc(R;C
2), F �≡ 0 with L(ϕ)F = λF

and F (x+ 2) = F (x), ∀x ∈ R
}
.

By [4], specper L(ϕ) consists of a sequence of real numbers (λ
±
k (ϕ))k∈Z, which

can be ordered in such a way that (for all k ∈ Z)

(2.1) λ−
k (ϕ) ≤ λ+k (ϕ) < λ−

k+1(ϕ)

and λ±
k (ϕ) ∼ kπ for |k| large. We have the following

Proposition 2.1. — Let ϕ ∈ L2(S1;C). Then, for any k ∈ Z,

(i) λ±
k (e

iαϕ) = λ±
k (ϕ), λ±

k (ϕ) = λ±
k (Tτϕ) (∀α ∈ R, τ ∈ R);

(ii) λ±
k (̌ϕ) = −λ∓

−k(ϕ), λ±
k (ϕ) = −λ∓

−k(ϕ).
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Proof. — (i) For α ∈ R arbitrary, define Vα =
(
e−iα/2 0
0 eiα/2

)
. One easily verifies

that

(2.2) L(eiαϕ) = V −1
α L(ϕ)Vα

and L(Tτϕ) = TτL(ϕ)T−τ . Thus both, L(eiαϕ) and L(Tτϕ), are unitarily
equivalent to L(ϕ) and the claimed statement follows. To prove (ii) notice
that

(2.3) L(−̌ϕ) = −W−1L(ϕ)W

where W is the unitary operator defined by

W
(
Y
Z

)
:=

(
Y̌

Ž

)
, with

(
Y
Z

)
∈ L2loc(R;C

2).

Thus

(2.4) specper L(−̌ϕ) = − specper L(ϕ).

Combining (2.4) and (i) we obtain λ±
k (̌ϕ) = −λ∓

−k(ϕ) for all k ∈ Z. Con-
sider λ ∈ specper L(ϕ) and choose F ∈ H1

loc(R;C
2), satisfying F (x + 2) =

F (x) for all x ∈ R and L(ϕ)F = λF. As λ is real, L(−ϕ)F = −λF and
thus −λ ∈ specper L(−ϕ). Combined with (i), this leads to λ±

k (ϕ) = −λ∓
−k(ϕ)

for all k ∈ Z.

2.2. Dirichlet spectra and divisors. — To study properties of the Dirich-
let spectra it is convenient to consider the AKNS operatorH(ϕ) instead of L(ϕ).
Let

Fj(x, λ;ϕ) :=
(
Yj(x, λ;ϕ)
Zj(x, λ;ϕ)

)
, j = 1, 2,

be the fundamental solutions of H(ϕ), i.e. the solutions to HF = λF such that

F1(0, λ;ϕ) =
( 1
0

)
, F2(0, λ;ϕ) =

( 0
1

)
.

For each x ∈ R and ϕ ∈ L2(S1;C), F1(x, λ;ϕ) and F2(x, λ;ϕ) are entire
functions of λ. The two Dirichlet spectra are defined as follows

(2.5) spec+Dir L(ϕ) =
{
λ ∈ C | Z1(1, λ;ϕ) = 0

}
,

(2.6) spec−Dir L(ϕ) =
{
λ ∈ C | Y2(1, λ;ϕ) = 0

}
.

It is proved in [4] that spec+Dir L(ϕ), resp. spec−Dir L(ϕ), consists of sim-
ple, real eigenvalues (µk(ϕ))k∈Z, resp. (νk(ϕ))k∈Z. The numerotation is chosen
in such a way that (µk(ϕ))k∈Z and (νk(ϕ))k∈Z are strictly increasing satisfy-
ing µk(ϕ) ∼ kπ and νk(ϕ) ∼ kπ for |k| large. Further introduce the func-
tion δ(λ;ϕ), defined by

(2.7) δ(λ;ϕ) = Z2(1, λ;ϕ)− Y1(1, λ;ϕ).
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