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ELLIPSITOMIC ASSOCIATORS

Damien Calaque, Martin Gonzalez

Abstract. — We develop a notion of ellipsitomic associators by means of operad theory.
We take this opportunity to review the operadic point-of-view on Drinfeld associators
and to provide such an operadic approach for elliptic associators too. We then show
that ellipsitomic associators do exist, using the monodromy of the universal ellipsit-
omic KZB connection, that we introduced in a previous work. We finally relate the
KZB ellipsitomic associators to certain Eisenstein series associated with congruence
subgroups of SLy(Z), and to twisted elliptic multiple zeta values.

Résumé (Associateurs ellipsitomiques). — Nous développons la notion d’associateur
ellipsitomique au moyen de la théorie des opérades. Nous saisissons cette opportunité
pour revoir le point de vue opéradique sur les associateurs de Drinfeld, et pour fournir
également une telle approche opéradique pour les associateurs elliptiques. Nous mon-
trons ensuite que les associateurs ellipsitomiques existent, en utilisant la monodromie
de la connexion KZB ellipsitomique universelle, que nous avions introduite dans un
travail précédent. Nous relions pour finir les associateurs ellipsitomiques KZB & cer-
taines séries d’Eisenstein associées aux sous-groupes de congruence de SLs(Z), et aux
valeurs zéta multiples elliptiques tordues.

(© Mémoires de la Société Mathématique de France 179, SMF 2023
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INTRODUCTION

The torsor of associators was introduced by Drinfeld [17] in the early nineties, in the
context of quantum groups and prounipotent Grothendieck-Teichmuller theory. Since
then, it has proven to have deep connections with several areas of mathematics (and
physics): number theory [34], deformation quantization [22, 33, 39], Chern-Simons
theory and low-dimensional topology [32], algebraic topology and the little disks op-
erad [38], Lie theory and the Kashiwara-Vergne conjecture [1, 2] etc. In this paper we
are mostly interested in the operadic and also number theoretic aspects. For instance,

(a) The torsor of associators can be seen as the torsor of isomorphisms between two
operads in (prounipotent) groupoids related to the little disks operad, denoted
PaB and PaCD (for parenthesized braids and parenthesized chord diagrams).
These can be understood as the Betti and de Rham fundamental groupoids of
an operad of suitably compactified configuration spaces of points in the plane.
See Chapter 2 for more details, and accurate references.

(b) It is expected that associators can be seen as generating series for (variations
on motivic) multiple zeta values (MZVs), as was observed for the KZ associator
[34] and the Deligne associator [11].

The first example of an associator was produced by Drinfeld as the renormalized
holonomy of a universal version of the so-called Knizhnik-Zamolodchikov (KZ) con-
nection [17], which is defined on a trivial principal bundle over the configuration space
of points in the plane. The defining equations of an associator can be deduced from
intuitive geometric reasonings about paths on configuration spaces, and they lead to
representations of braid groups.

Enriquez, Etingof and the first author [12] introduced a universal version of an
elliptic variation on the KZ connection (known as Knizhnik-Zamolodchikov-Bernard,
or KZB, connection, as the extension to higher genus is due to Bernard [6, 5]). It is a
holomorphic connection defined on a non trivial principal bundle over configuration
spaces of points on an elliptic curve. They showed that

— The holonomy of the universal KZB connection along fundamental cycles of an
ellitpic curve satisfy relations which lead to representations of braid groups on
the (2-)torus.

SOCIETE MATHEMATIQUE DE FRANCE 2023



viii INTRODUCTION

— They also satisfy a modularity property, that is a consequence of the fact that
the (universal) KZB connection extends from configuration spaces of points on
an elliptic curve to moduli spaces of marked elliptic curves (see also [35] for
when there are at most 2 marked points).

Enriquez later introduced the notion of an elliptic associator [19], and proved that
the holonomy of the universal elliptic KZB connection does produce, for every elliptic
curve, an example of elliptic associator. The class of elliptic associators that are ob-
tained via this procedure are called KZB associators. In another work [21], Enriquez
defined and studied an elliptic version of MZVs; he showed that KZB associators are
generating series for elliptic MZVs (eMZVs).

In a recent paper [13] we introduced a generalization of the universal elliptic KZB
connection: the universal ellipsitomic KZB connection. It is defined over twisted con-
figuration spaces, where the twisting is by a finite quotient I" of the fundamental group
of the elliptic curve. When I" = 1 is trivial, one recovers the universal elliptic KZB
connection.

The aim of the present paper is two-fold.

(a) First we provide an operadic interpretation of elliptic associators. We extend
this approach to the ellipsitomic case, use the language of operads to define el-
lipsitomic associators, and sketch the rudiments of an ellipsitomic Grothendieck-
Teichmiiller theory.

(b) Then we show that holonomies of the universal ellipsitomic KZB connection
along suitable paths produce examples of ellipsitomic associators, and are gener-
ating series for elliptic multiple polylogarithms at I'-torsion points, that are sim-
ilar to the twisted elliptic MZVs (teMZVs) studied in [10] by Broedel-Matthes-
Richter-Schlotterer.

Our work fits in a more general program that aims at studying associators for
an oriented surface together with a finite group acting on it. We summarize in the
following table the contributions to this program that we are aware of:

gen. group associators operadic Universal connection / coefficients
approach existence proof
0 trivial [17] (4, 23] rational KZ [17] / ibid. MZVs [34]
0 Z/NZ cyclotomic [14] trigonometric KZ [18] / colored
associators [18] ibid. MZVs [18]
0 fin. C PSU2(C) unknown unknown [36] / unknown unknown
1 trivial elliptic this paper  elliptic KZB [12] / [19] eMZVs [21]
associators [19]  (Sec. 3)
1 Z/MZ x ZJ/NZ ellipsitomic this paper ellipsitomic KZB [13] / this this paper
associators (Sec. 4 & paper (Sec. 6) (Sec. 7)
(this paper) 5)
>1 trivial [27] [27] KZB [20] / conj. in [27] maybe [25]
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Description of the paper

The first chapter is devoted to some recollection on operads and operadic modules,
with some emphasis on specific features when the underlying category is the one
of groupoids. Chapter 2 also recollects known results, about the operadic approach
to (genuine) associators and to various Grothendieck-Teichmiiller groups. The main
results we state are taken from the recent book [23].

The main goal of Chapter 3 is to provide a similar treatment of elliptic associators,
using operadic modules in place of sole operads. We show in particular that (a variant
of) the universal elliptic structure PaB.y, (resp. its graded/de Rham counterpart
GPaCD.y) from [19] carries the structure of an operadic module in groupoids over
the operad in groupoid PaB (resp. GPaCD). We provide a generators and relations
presentation for PaB.s (Theorem 3.3), and deduce from it the following

THEOREM (Theorem 3.15). — The torsor of elliptic associators from [19] coincides
with the torsor of isomorphisms from (a variant of ) PaB.y to GPaCD.y, that are the
identity on objects. Similarly, the elliptic Grothendieck-Teichmiiller group (resp. its
graded version) is isomorphic to the group of automorphisms of PaB.y (resp. of
GPaCDy.) that are the identity on objects.

The fourth chapter introduces a generalization of PaB.s, with an additional la-
beling/twisting by elements of " (recall that I is the group of deck transformations
of a finite cover of the torus by another torus). We give a geometric definition of
the operadic module PaBEM of parenthesized ellipsitomic braids, and then provide
a presentation by generators and relations for it (Theorem 4.5). In the fifth chap-
ter we define an operadic module of ellipsitomic chord diagrams, that mixes features
of PaCD,y, from Chapter 3, and of the moperad of cyclotomic chord diagrams from
[14]. This allows us to identify ellipsitomic associators, which we define in purely
operadic terms, with series satisfying certain algebraic equations (Theorem 5.9).

Chapter 6 is devoted to the proof of the following
THEOREM (Theorem 6.1). — The set of ellipsitomic associators over C is non-empty.

The proof makes crucial use of the ellipsitomic KZB connection, introduced in our
previous work [13], and relies on a careful analysis of its monodromy. We actually
prove that one can associate an ellipsitomic associator with every element of the
upper half-plane (Theorem 6.1). In the last chapter we quickly explore some number
theoretic and modular aspects of the coefficients of the “KZB produced” ellipsitomic
associators from the previous chapter.

Finally, in an appendix we provide an alternative presentation for PaBEM.
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CHAPTER 1

BACKGROUND MATERIAL ON OPERADS AND GROUPOIDS

In this chapter we fix a symmetric monoidal category (C, ®,1) having small colim-
its. Let us assume for simplicity of exposition that ® commutes with these (.

1.1. G-modules

An G-module (in C) is a functor S : Bij — C, where Bij denotes the category
of finite sets with bijections as morphisms. It can also be defined as a collection
(S(n)),,>o of objects of C such that S(n) is endowed with a right action of the symmet-
ric group &,, for every n; one has S(n) := S({1,...,n}). A morphism of G-modules
¢ S — T is a natural transformation. It is determined by the data of a collection
o(n) : S(n) — T(n) of &,-equivariant morphisms in C.

The category &-mod of &-modules is naturally endowed with a symmetric
monoidal product ® defined as follows:

SeT)m) =[] (Sk)eT(@)e e, -
ptqg=n

Here, if H C G is a group inclusion, then (—)$ is left adjoint to the restriction functor
from the category of objects carrying a G-action to the category of objects carrying
an H-action.

The symmetric sequence 1g defined by
1 ifn=0
1g(n) = .
() otherwise
is a monoidal unit for ®.
1. This latter assumption is not necessary (and we will have to get rid of it when considering
the monoidal structure given by the direct sum of Lie algebras): if the monoidal product does not
commute with colimits, the category of G-module still has enough structure so that one can define

monoids and modules in it. Characterizations in terms of partial compositions remain unchanged.
We refer to [15] for more details.

SOCIETE MATHEMATIQUE DE FRANCE 2023



2 CHAPTER 1. BACKGROUND MATERIAL ON OPERADS AND GROUPOIDS

There is another (non-symmetric) monoidal product o on &-mod, defined as fol-
lows:

(SoT)(n) =[] T(k) S®k( ).

k>0

Here, if H is a group and X,Y are objects carrying an H-action, then

h®id

X@Y:=coeq | [[X®Y XoV
H d
heH id®h

The symmetric sequence 1, defined by
1 ifn=1
lon):=4_ ="
(0 otherwise

is a monoidal unit for o.

1.2. Operads

An operad (in C) is a unital monoid in (&-mod,o,1,). The category of operads
in C will be denoted OpC.

More explicitly, an operad structure on a G-module O is the data:
— of a unit map e: 1 — O(1);
— for every sets I, J and any element i € I, of a partial composition
0, : 0(I)®O0(J) — O(JUI-{i})
satisfying the following constraints:

— for every sets I, J, K, with elements ¢ € I, j € J, the following diagram com-
mutes:

o) ® O(J) ® O(K) %84 oul - {i}) ® O(K)

lid@oj J/Oj

ON@OKUJ—{j}) ———— O(KuJuI-{i,j})
— for every sets I, Jy, Jo, with elements i1, i3 € I, the following diagram commutes:

O(1) ® O(J1) © O(Js) — 20 L O (L UT— {ir}) ® O()

\L(OQ ®id)(23) \Loiz

@ (J2 ur-— {22}) ® O(Jl) L O (JQ UJul— {il,iz})

MEMOIRES DE LA SMF 179



1.3. EXAMPLE OF AN OPERAD: STASHEFF POLYTOPES 3

— for every sets I,I',J, i € I, with a bijection o : I — I’, the following diagram

commutes:
o) ® O(J) ot) o) ® O(J)
Joi loo(i)
. O(idUo |1 —43) , .
OWJUI-{i}) — o0 (Jul' —{o(¥)})

— for every set I,with ¢ € I, the following diagrams commute:

1000) —2oheol) ol)e1—22%0u1)20{1})

> A |-

o(I) O(I) —=—~0Iu{1}-{i}).

ExaMPLE 1.1. — Let X be an object of C. Then we define, for any finite set I, the
set End(X)(I) := Home(X®!, X). Composition of tensor products of maps provide
End(X) with the structure of an operad in sets.

Given an operad in sets O, an O-algebra in C is an object X of C together with a
morphism of operads O — End(X).

1.3. Example of an operad: Stasheff polytopes

To any finite set I we associate the configuration space
Conf(R, 1) = {x = (z;)ics € R |z; # x; if i # j}
and its reduced version
C(R,I) := Conf(R,I)/R x Rxy.

The Axelrod-Singer-Fulton-MacPherson compactification ® C(R,I) of C(R,I) is
a disjoint union of |I|-th Stasheff polytopes [37], indexed by &;. The bound-
ary OC(R, I) := C(R,I) — C(R,I) is the union, over all partitions I = J; []--- ][ Jk,

of
k

01,,...0,C(R, 1) := [ C(R, J;) x C(R, k).
i=1
The inclusion of boundary components provides C(R,—) with the structure of an
operad in topological spaces (where the monoidal structure is given by the cartesian
product).

2. We are using the differential geometric compactification from [3], which is an analog of the
algebro-geometric one from [24].

SOCIETE MATHEMATIQUE DE FRANCE 2023



4 CHAPTER 1. BACKGROUND MATERIAL ON OPERADS AND GROUPOIDS

One can see that C(R,I) is actually a manifold with corners, and that, consid-
ering only zero-dimensional strata of our configuration spaces, we get a suboperad
Pa C C(R, —) that can be shortly described as follows:

— Pa(I) is the set of pairs (o,p) with o is a linear order on I and p a maximal
parenthesization of e---e
——
|I] times
— the operad structure is given by substitution.

Notice that Pa is actually an operad in sets, and that Pa-algebras are nothing else
than magmas.

1.4. Modules over an operad: Bott-Taubes polytopes

A module over an operad O (in C) is a right O-module in (6-mod, o, 1,). Notice that
any operad is a module over itself. We let the reader find the very explicit description
of a module in terms of partial compositions, as for operads.

To any finite set I we associate the configuration space
Conf(S',I) = {x = (zi)ier € (S")!|zi # =z; if i # j}
and its reduced version
C(SY, I) := Conf(S*, I)/S*.

The Axelrod-Singer-Fulton-MacPherson compactification C(S',I) of C(S',I) is
a disjoint union of |I|-th Bott-Taubes polytopes [8], indexed by &;. The bound-
ary OC(S?, I) := C(S*,I) — C(S', I) is the union, over all partitions I = J; [[ -] Jk,
of

k
1,...5.C(S" I) == [[ C(R, Ji) x C(S, k).
=1

The inclusion of boundary components provides C(S!,—) with the structure of a
module over the operad C(RR, —) in topological spaces.

One can see that C(S!, I) is actually a manifold with corners, and that, considering
only zero-dimensional strata of our configuration spaces, we get Pa C C(S!, —), which
is a module over Pa C C(R, —).

1.5. Convention: pointed versions

Observe that there is an operad Unit defined by
1 ifn=0,1

0 otherwise.

Unit(n) = {

By convention, all our operads O will be Unit-pointed and reduced, in the sense
that they will come equipped with a specific operad morphism Unit — O that is an
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1.6. GROUP ACTIONS 5

isomorphism in arity < 1: O(n) ~ 1 if n = 0,1. Morphisms of operads are required
to be compatible with this pointing.

Now, if P is an O-module, then it naturally becomes a Unit-module as well, by
restriction. By convention, all our modules will be pointed as well, in the sense that
they will come equipped with a specific Unit-module morphism Unit — P that is an
isomorphism in arity < 1. Morphisms of modules are also required to be compatible
with the pointing.

The main reason for this convention is that we need the following features, that we
have in the case of compactified configuration spaces:

— For operads and modules, we want to have “deleting operations” O(n) — O(n — 1)
that decrease arity.

— For modules, we want to be able to see the operad “inside” them, i.e., we want
to have distinguished morphism O — P of G-modules.

1.6. Group actions

Let G be a *-module in group, where * is the terminal operad: the partial compo-
sition o; is a group morphism G(n) — G(n +m — 1).

ExAMPLE 1.2. — Let I' be a group, we consider the &-module in groups
[ := {I"/Tdiae}, -, where ['{i28 denotes the normal closure of the diagonal subgroup
in each I'". It is equipped with the following *-module structure: the i-th partial
composition is given by the partial diagonal morphism

m/r — rrtmelr
Y1y Y] = [ViseeesYim1y Vis -« s Yis Yitly - -+ Vn)-
—_
m times
Given an operad O in C, we say that an O-module P carries a G-action if
— for every n > 0, there is an &,-equivariant left action G(n) x P(n) — P(n),
— for every m > 0, n > 0, and 1 < i < n, the partial composition
0, : Pn)® O(m) — P(n+m —1)
is equivariant along the above group morphism G(n) — G(n + m — 1).

A morphism P — Q of O-modules with G-action is said G-equivariant if, for ev-
ery n > 0, the map P(n) — Q(n) is G(n)-equivariant.

Given a group I', we say that an O-module P carries a diagonally trivial action of
T if it carries a T-action.

The quotient G\P of an O-module P with a G-action is defined as follows:
— For every n > 0, (G(n)\P)(n) :== G(n)\P(n);
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6 CHAPTER 1. BACKGROUND MATERIAL ON OPERADS AND GROUPOIDS

— The equivariance of the partial composition o; tels us that it descends to the
quotient

(G(n)\P(n)) ® O(m) — G(n+m —1)\P(n+m —1).

1.7. Semi-direct products and fake pull-backs

Let Grpd be the category of groupoids. For a group G, we denote G-Grpd the
category of groupoids equipped with a G-action. There is a semi-direct product functor

G-Grpd — Grpd/g
P — PxG

where the group G is viewed as a groupoid with a single object, and where P x G is
defined as follows:

— Objects of P x G are just objects of P;

— In addition to the arrows of P, for every g € G, and for every object p of P,
there is an arrow g - p > p;

— These new arrows multiply together via the group multiplication of Gj
— For every morphism f in P, and every g € G, the relation gfg~! = ¢ - f holds.
NOTATION 1.3. — We warn the reader that we use all along the paper the following

rather unusual convention for arrows in a groupoid, and more generally in a category:
we often concatenate arrows rather than composing them.

In other words, fifs = fao fi.

There is also a functor G going in the other direction
Grpd/G — G-Grpd
(Q5G)— Glp),
that one can describe as follows:
— The G-set of objects of G(¢p) is the free G-set generated by Ob(Q);

— A morphism (g,z) — (h,y) in G(¢) is a morphism x EN y in Q such that
9p(f) = h.

EXAMPLE 1.4. — The groupoid G(B,, — &,,) is the colored braid groupoid CoB(n)
from [23, §5.2.8].

REMARK 1.5. — Given an object ¢ of Q, Autg,(g,q) is the kernel of the mor-
phism Autg(g) — G for every g € G.
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These constructions still make sense for modules over a given operad O whenever
G is an operadic *-module in groups.

Let P, Q be two operads (resp. modules) in groupoids. If we are given a mor-
phism f : Ob(P) — Ob(Q) between the operads (resp. operad modules) of objects
of P and Q, then (following [23]) we can define an operad (resp. operad module) f*Q
in the following way:

— Ob(f*Q) := Ob(P),
— Homs+ 0)(n) (P, q) := Homg) (f(p), f(q))-

In particular, f*Q, which we call the fake pull-back of Q along f, inherits the operad
structure of P for its operad of objects and that of Q for the morphisms.

REMARK 1.6. — Notice that this is not a pull-back in the category of operads in
groupoids.

1.8. Prounipotent completion

Let k be a Q-ring. We denote by CoAlgy the symmetric monoidal category of com-
plete filtered topological coassociative cocommutative counital k-coalgebras, where
the monoidal product is given by the completed tensor product ®j over k.

Let Cat(CoAlgy) be the category of small CoAlgy-enriched categories. It is sym-
metric monoidal as well, with monoidal product ® defined as follows:

— Ob(C ® ") := Ob(C) x Ob(C").
— Homcger ((¢, ), (d,d')) :== Home (¢, d)®x Homer (¢, d').

All the constructions of the previous section still make sense, at the cost of replacing
the group G with its completed group algebra kG (which is a Hopf algebra) in the
semi-direct product construction.

Considering the cartesian symmetric monoidal structure on Grpd, there is a sym-
metric monoidal functor

Grpd — Cat(CoAlgy)
g — G(k),

defined as follows:

— Objects of P(k) are objects of P.
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— For a,b € Ob(P),
Homp)(a,b) = k - Homp(a, b).
Here k - Homp(a, b) is equipped with the unique coalgebra structure such that
the elements of Homp(a,b) are grouplike (meaning that they are diagonal for
the coproduct and that their counit is 1), and the “ ™" refers to the completion
with respect to the topology defined by the sequence (Homzx (a, b))k>0, where
T* is the category having the same objects as P and morphisms lying in the
k-th power (for the composition of morphisms) of kernels of the counits of k -
Homp(a,b)’s.
— For a functor F' : P — Q, F(k) : P(k) — Q(k) is the functor given by F on
objects and by k-linearly extending F' on morphisms.
Being symmetric monoidal, this functor sends operads in groupoids to operads
in Cat(CoAlgy).

EXAMPLE 1.7. — For instance, viewing Pa as an operad in groupoid (with only iden-
tities as morphisms), then Pa(k) is the operad in Cat(CoAlgy) with same objects
as Pa, and whose morphisms are
k ifa=0b
Homp, (1) (n)(a,b) =
Pa(i(m) (@) {O otherwise,
with k being equipped with the coproduct A(1) =1® 1 and counit €(1) = 1.

The functor we have just defined has a right adjoint
G : Cat(CoAlgy) — Grpd,
that we can describe as follows:
— For C in Cat(CoAlgy), objects of G(C') are objects of C.
— For a,b € Ob(G), Homg(cy(a,b) is the subset of grouplike elements in Home (a, b).

Being right adjoint to a symmetric monoidal functor, it is lax symmetric monoidal,
and thus it sends operads (resp. modules) to operads (resp. modules).

We thus get a k-prounipotent completion functor G — G (k) := G(G(k)) for (oper-
ads and modules in) groupoids.

REMARK 1.8. — Let ¢ : G — S be a surjective group morphism, and assume that S is
finite. One can prove that the prounipotent completion G (¢)(k) of the construction
from the previous section is isomorphic to G(p(k)), where ¢(k) : G(p,k) — S is
Hain’s relative completion [28]. This essentially follows from that, when S is finite,
the kernel of the relative completion is the completion of the kernel.
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CHAPTER 2

OPERADS ASSOCIATED
WITH CONFIGURATION SPACES
(ASSOCIATORS)

2.1. Compactified configuration space of the plane

To any finite set I we associate a configuration space
Conf(C,I) = {z = (2i)icr € C'lz; # z; if i # j}.
We also consider its reduced version
C(C,I) := Conf(C,I)/C x Rsy.

We then consider the Axelrod-Singer-Fulton-MacPherson compactification C(C,I)
of C(C,I). The boundary dC(C,I) = C(C,I) — C(C,I) is made of the following
irreducible components: for any partition I = J; [[--- ][] Jx there is a component

k
8J1,~~7J1c6((c71) = G(Ca k) X H@((C, Jz)
=1

The inclusion of boundary components provides C(C,—) with the structure of
an operad in topological spaces. One can picture the partial operadic composition
morphisms as follows:
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