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ORIENTABILITY OF THE MODULI SPACE OF REAL MAPS
AND REAL GROMOV–WITTEN THEORY
[after Penka Georgieva and Aleksey Zinger]

by Michele Ancona

I knew exactly what to do,
but in a much more real sense

I had no idea of what to do.
— Michael Scott

Introduction

Gromov–Witten theory studies symplectic manifolds via maps from Riemann sur-
faces into them. Counting such maps in a proper way produces rational numbers,
called Gromov–Witten (GW-) invariants, that are invariant by deformation of a sym-
plectic manifold. Let us give an informal definition of GW-invariants of a symplectic
manifold (X, ω). One first fixes a generic almost-complex structure J on (X, ω) such
that ω(·, J·) defines a Riemannianmetric. Such an almost-complex structure is called
calibrated. GROMOV (1985) proved that the space of calibrated almost-complex struc-
tures is non-empty and contractible. Then, for any non-negative integers g and k and
any homology class A ∈ H2(X, Z), one considers the moduli space M g,k(X, A) con-
sisting of elements [u, (Σ, j), x1, . . . , xk] where:

. Σ is a genus g compact surface with at worst nodal singularities and j is a com-
plex structure on Σ (the pair (Σ, j) is called a Riemann surface);

. x1, . . . , xk are marked points on Σ;

. u : (Σ, j) → (X, J) is a map verifying J ◦ du = du ◦ j (such a map is called J-
holomorphic or pseudo-holomorphic) and such that the push-forward u∗[Σ] of the
fundamental class of Σ is A (one says that u realizes A);

. the group of automorphisms of (u, (Σ, j), x1, . . . , xk) (that is, the biholomor-
phisms φ of (Σ, j) such that φ(xi) = xi and u ◦ φ = u) is finite.
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One then fixes cohomology classes α1, . . . , αk of X such that

k

∑
i=1

deg(αi) = dim M g,k(X, A) = (1 − g)(6 − dim X) + 2〈c1(TX), A〉+ 2k

and counts the number of maps [u, (Σ, j), x1, . . . , xk] ∈ M g,k(X, A) such that
u(xi) ∈ Yi, where Yi ⊂ X is a generic representative of the Poincaré dual of αi.
The number of such maps is then independent of the choice of J and of the rep-
resentatives of the Poincaré duals of the classes αi and is called the GW-invariant
GWg,A(α1, . . . , αk). For example, the number Nd of degree d rational curves in P2

passing through a collection of 3d − 1 generic points is a GW-invariant of P2, namely
Nd = GW0,d(pt, . . . , pt). The equalities N1 = 1 and N2 = 1 are evident and N3 = 12
can be proved by counting the number of singular fibers of the pencil of cubics pass-
ing through 8 generic points of P2. The number N4 = 620 was obtained by ZEUTHEN
(1873). We had to wait until the mid ’90s to obtain the value of Nd for any d. This was
a consequence of the work of Kontsevich who found the beautiful recursive formula

Nd = ∑
dA+dB=d
dA ,dB⩾1

NdA NdB

(
d2

Ad2
B

(
3d − 4

3dA − 2

)
− d3

AdB

(
3d − 4

3dA − 1

))

which allows us to compute Nd for any d from the value N1 = 1 (see KONTSEVICH and
MANIN, 1994). Such a formula was indeed found thanks to the interpretation of the
numbers Nd as Gromov–Witten invariants and it actually expresses the associativity
of the product in the quantum cohomology ring of P2.
Remark. WITTEN (1991) discovered that the coefficients of the quantummultiplication
in quantum cohomology could be defined mathematically using symplectic geome-
try, in particular using intersection theory on the space of holomorphic curves in an
algebraic or symplectic manifold. It was GROMOV (1985), some years before, who
introduced the notion of pseudo-holomorphic curves in symplectic geometry. For
these reasons the invariants we are talking about are called Gromov–Witten invari-
ants. The first mathematical foundations of Gromov–Witten theory are the works of
KONTSEVICH and MANIN (1994) in the algebraic setting and of RUAN and TIAN (1995)
in the symplectic one.

A real symplectic manifold is a triple (X, ω, σX) where (X, ω) is a symplectic man-
ifold and σX : X → X is an involution verifying σ∗

Xω = −ω, called the real structure.
We will always assume that X is compact. The main example is the complex pro-
jective space Pn equipped with the Fubini–Study form ωFS and with the standard
conjugation conj : Pn → Pn sending [z0 : · · · : zn] to [z̄0 : · · · : z̄n]. More gener-
ally, if a projective manifolds X ⊂ Pn is defined by real polynomial equations, then
(X, ωFS|X , conj|X) is a real symplectic manifold. The real locus of a real symplectic
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manifold is by definition the fixed locus of σX and is denoted by RX. It is either
empty or a finite union of Lagrangian submanifolds of (X, ω). A real Riemann surface
(Σ, σ, j) is a Riemann surface (Σ, j) equipped with an anti-holomorphic involution σ.
Given a calibrated almost-complex structure J on (X, ω) verifying σ∗

X J = −J, a real
curve in (X, ω, σX) is a (σ, σX)-equivariant J-holomorphic map from a real Riemann
surface (Σ, σ, j) into (X, σX , J). As for the complex case, one would like to extract
invariants of (X, ω, σX) from counting real curves inside it. However, the number
of real curves realizing a given class and passing through an appropriate number of
cycles Yi ⊂ X depends on the particular choice of the cycles, and not just on their
(co)-homology classes. For example, the number of degree d real rational curves
u : (P1, conj) → (P2, conj) passing through 3d − 1 generic points of RP2 depends on
the choice of such points. The first breakthroughwasmade byWELSCHINGER (2005a,b,
2007a) when he defined invariants of real symplectic fourfolds and strongly semipos-
itive sixfolds, now called Welschinger invariants. The approach of Welschinger was
to assign a sign±1 to each individual real rational curve passing through a fixed real
configuration of points (i.e. a collection of r real points on a connected component
RX0 of RX and l pairs of complex-conjugate points in X) and by proving that the
resulting signed count of such curves is invariant, that is, it does not depend on the
position of the points but only on the chosen connected component RX0 of RX, on r
and on l. By their own definition, Welschinger invariants give lower bounds for the
number of real rational curves passing through a generic real configuration of points.
We will not define Welschinger invariants here, but refer the reader to the Bourbaki
seminar of OANCEA (2012) for a gentle introduction to them. Since the discovery of
Welschinger invariants, many advances have been made on real Gromov–Witten the-
ory in genus 0, but essentially none in higher genus.
Remark. TheWelschinger sign of a real curve inside a real symplectic manifoldmakes
sense for real curves of any genus; however the resulting signed count is not invariant
in higher genus (see for example WELSCHINGER (2005a) and ITENBERG, KHARLAMOV,
and SHUSTIN (2003, Theorem 3.1)).

Let us explain one of the main difficulties that occurs in trying to define real
Gromov–Witten invariants in general. For this, let us notice that the (complex) GW-
invariant GWg,A(α1, . . . , αk) described above coincides with the integral∫

M g,k(X,A)
ev∗

1α1 ∧ · · · ∧ ev∗
k αk

where evi : [u, (Σ, j), x1, . . . , xk] ∈ M g,k(X, A) 7→ u(xi) ∈ X. For the integral to be
well-defined, one needs the space M g,k(X, A) to be oriented. Here is one of the main
problems in real Gromov–Witten theory: the moduli spaces of real J-holomorphic
curves in (X, ω, σX) are in general not orientable, and when they are, there is not
a preferred orientation. The orientability problem is then a central question in real
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Gromov–Witten theory. Welschinger invariants have been interpreted and studied in
term of orientability of moduli spaces of pseudo-holomorphic disks by CHO (2008)
and SOLOMON (2006) using the work of FUKAYA et al. (2009), in particular the no-
tion of relative spin structure (we will recall this notion later in the introduction).
Solomon extended the definition of these invariants to real symplectic sixfolds and
for real curves of higher genus but with fixed conformal structure. Later, GEORGIEVA
(2016) defined a signed count of real genus 0 curves with conjugate pairs of arbi-
trary constraints in arbitrary dimensions for strongly semipositive manifolds (X, ω)

verifying some additional topological properties which, in particular, implies the ex-
istence of a relative spin structure on RX. Such invariants were further generalized
by FARAJZADEH TEHRANI (2016)who included also genus 0 real curveswith empty real
locus in the signed count.

The main theorem we present in this note is a theorem by GEORGIEVA and ZINGER
(2018), which gives sufficient conditions on a real symplectic manifold (X, ω, σX)

for the moduli spaces RM g,l(X, A) of real maps from genus g real curves together
with l pairs of complex-conjugate marked points to be oriented for any g, l and class
A ∈ H2(X, Z). The sufficient condition is given by the notion of real-orientation on
(X, ω, σX) defined below in the introduction. The main theorem (Theorem 3.4) then
asserts that a real-orientation on a real-orientable symplectic manifold (X, ω, σX) of
dimension 2n, with n /∈ 2N, orients RM g,l(X, A). An orientation of RM g,l(X, A)

can then be used to define genus g real Gromov–Witten invariants of (X, ω, σX) with
conjugate pairs of contraints.

In order to introduce the notion of real orientability, we first need the following
definition.

Definition. A real bundle pair (E, σE) over (X, σX) is a complex vector bundle π : E → X
equipped with an involution σE which is complex anti-linear in the fibers and such that
π ◦ σE = σX ◦ π. Such involution is called a real structure of E.

An isomorphism of real bundle pairs is an isomorphism between the underlying complex
vector bundles which commutes with the real structures.

The fixed locus RE of (E, σE) is then a real vector bundle over RX whose real rank
equals the complex rank of E. For example, the tangent bundle (TX, dσX) of (X, σX)

is a real bundle pair over (X, σX). Tensor products, direct sums, duals and exterior
powers of real bundle pairs are again real bundle pairs.

Definition (Real orientability). A real symplectic manifold is real-orientable if there exists a
rank 1 real bundle pair (L, σL) over (X, σX) such that

(1) w2(TRX) = w1(RL)2, where wi(·) ∈ Hi(RX, Z/2) denotes the i-th Stiefel–
Whitney class of a real vector bundle;

(2) Λtop
C

(TX, dσX) is isomorphic (as a real bundle pair) to (L, σL)
⊗2.
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Here are some examples of real-orientable symplectic manifolds:

. The odd-dimensional projective space (P2n−1, ωFS, conj). In this case, one has
Λtop

C
(TP2n−1, conj) = (OP2n−1(2n), σ2n) and (L, σL) = (OP2n−1(n), σn), where

σk is the natural real structure of OP2n−1(k) over (P2n−1, conj).

. The projective space (P4n−1, ωFS, τ)with empty real locus. Here, τ maps a point
[x0 : x1 : · · · : x4n−2 : x4n−1] to [x̄1 : −x̄0 · · · : x̄4n−1 : −x̄4n−2]. In this case,
we have Λtop

C
(TP4n−1, dτ) = (OP4n−1(4n), τ4n) and (L, σL) = (OP4n−1(2n), τ2n),

where τ2k is the natural real structure ofOP4n−1(2k) over (P4n−1, τ). Remark that
the line bundle OP4n−1(2k+ 1) over (P4n−1, τ) does not admit any real structure.

. Complete intersections X ⊂ Pn defined by n − 3 real polynomials of de-
grees d1, . . . , dn−3 with d1 + · · · + dn−3 ≡ n + 1 (mod 4). Indeed, the ad-
junction formula says that Λtop

C
(TX, dσX) is isomorphic to (OX(nd), σnd), with

nd := n + 1 − d1 − · · · − dn−3 and, under the previous assumption, the real
bundle pair (L, σL) = (OX(nd/2), σnd/2) verifies the two real orientability con-
ditions. An example of such real symplectic manifold is a real quintic threefold
in P4.

. Real compact Kähler Calabi–Yau threefolds and, more generally, real compact
Kähler Calabi–Yau manifolds with spin real locus. In this case, Λtop

C
(TX, dσX)

is trivial so that the real bundle pair (L, σL) = Λtop
C

(TX, dσX) itself verifies the
two real orientability conditions.

Remark. Recently, GEORGIEVA and IONEL (2021) have defined the notion of twisted
real-orientation, which is a slight generalization of the notion of real-orientation, and
checked that the proofs of themain theorems ofGEORGIEVA andZINGER (2018, 2019a,b)
can be adapted for twisted real-orientable symplectic manifolds of odd “complex”
dimension. For example, all odd-dimensional projective spaces (P2n−1, ωFS, τ) with
empty real locus are twisted real-orientable, but they are not real-orientable. Very
recently, GEORGIEVA andZINGER (2023) gavemore details about this and also corrected
some minor errors in their previous articles.

Let us collect some remarks on the notion of real orientability. Let us start with
the second point of the definition. An isomorphism between Λtop

C
(TX, dσX) and

(L, σL)
⊗2 induces, by restriction to the real locus, an isomorphism of real line bundles

over RX between Λtop
R (TRX) and (RL)⊗2. Now, the line bundle (RL)⊗2 is orientable,

so a necessary condition for a real symplectic manifold to be real-orientable is that
its real locus is orientable. Let us now comment on the first point in the definition
of real orientability. Recall that a real vector bundle V over a topological space M
is orientable if and only if its first Stiefel–Whitney class w1(V) ∈ H1(M, Z/2) van-
ishes and that an orientable vector bundle V admits a spin structure if and only if
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