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EXOTIC SUBGROUPS OF HYPERBOLIC GROUPS

by Olivier Guichard

1. Introduction

Since their introduction by GROMOV (1987), word hyperbolic groups have been the
focus of a lot of activity and have proved central in attacking a number of problems.
It was soon noticed that their cohomological properties are very strong. As a matter
of fact, a torsion-free word hyperbolic group Γ is of typeF , meaning that Γ is the fun-
damental group of a finite aspherical cell complex (GROMOV (1987) attributes this to
Eliyahu Rips). Such a property for a group Γ is called a finiteness property. For every
positive integer n, there is a coarser finiteness property denoted Fn that requires a
group Γ to be the fundamental group of an aspherical cell complex, possibly infinite,
but which has only finitely many cells up to dimension n. A group of type Fn and
not of type Fn+1 is sometimes said to have exotic finiteness properties(1). The aim
of this report is to illustrate that word hyperbolic groups can have exotic subgroups:
subgroups with exotic finiteness properties or subgroups of type F but not word
hyperbolic.

Theorem 1.1 (Llosa IsenRich and Py, 2024, corollary 3). Let n be a positive integer. There ex-
ists a word hyperbolic group Γ containing a subgroup that is of type Fn but not of type Fn+1.

Theorem 1.2 (Italiano, MaRtelli, and MiglioRini, 2023, corollary 2). There exists a word
hyperbolic group Γ containing a subgroup of type F that is not word hyperbolic.

In both statements the subgroups are kernels of homomorphisms from Γ toZ (and
in particular are normal subgroups). The geometric counterparts of these homomor-
phisms are maps from M to the circle, where M is a manifold or a pseudo-manifold
whose fundamental group is Γ. Thismakes the analysis of the subgroups amenable to
Morse-theoretical techniques. More precisely, on one hand Lefschetz theory is used

(1)This terminology was coined down by DIMCA, PAPADIMA, and SUCIU (2009, section 5), later used in a
book review by MEIER (2013), and popularized by LLOSA ISENRICH (2019); see also the title of section 7 in
JANKIEWICZ, NORIN, and WISE (2021). A formal definition appeared first in LLOSA ISENRICH and PY (2023).
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by LLOSA ISENRICH and PY (2024) to study word hyperbolic groups which are arith-
metic subgroups of U(n, 1) (and M is the quotient of the unit ball in Cn by the action
of these arithmetic subgroups); on the other hand theMorse theory of affine cell com-
plexes developed by BESTVINA and BRADY (1997) is used by ITALIANO, MARTELLI, and
MIGLIORINI (2023) for their word hyperbolic groupswhich are given by combinatorio-
geometrical data.

As emphasized by the authors themselves (and apparent in that the above cita-
tions point to corollaries), the interesting statements may not be the above results,
that give positive solutions to questions raised after the introduction of word hyper-
bolic groups, but the geometric constructions of which they are the shadows. The
present report will indeed sketch these constructions and try to refer to the original
articles for complete proofs.

Acknowledgement. — I am grateful to Nicolas Bourbaki for offering the opportunity
to present this seminar and for their careful readings of this text. I am glad to thank
hereClaudio Llosa Isenrich, BrunoMartelli, and Pierre Py for their helpwhilewriting
these notes. The feedback of Claudio and Pierre has improved this text far beyond
what the author could have written on his own.

2. A brief overview of the historical development and
further statements

Finiteness properties have various declinations: the properties FHn(R) (R is a ring)
request that the group Γ is the fundamental group of a compact cell complex whose
universal cover has trivial reduced homology with coefficients in R in degrees < n
(BESTVINA and BRADY, 1997, pp. 445–446), and the properties FPn(R) request that the
trivial R[Γ]-module has a projective resolutionwhose homogeneous factors of degree
⩽ n are finitely generated. The propertyF1 is equivalent to the group Γ being finitely
generated. The propertyF2 is equivalent to the group Γ being finitely presented. For
all n, the property Fn implies the property FHn(Z), FHn(Z) implies FHn(R), and
FHn(R) implies FPn(R) (and FPn(Z) implies FPn(R)).

RIPS (1982, corollary (b)) constructed the first example of a finitely generated,
hence F1, but not finitely presented, hence not F2, subgroup in a small cancella-
tion group (in particular in a word hyperbolic group). In his essay, GROMOV (1987,
section 4.4.A) suggested a strategy for finding subgroups with exotic finiteness prop-
erties in a word hyperbolic group, by taking covers of a flat torus, ramified over a
union of codimension 2 tori meeting orthogonally, and that fiber over the circle (later
Mladen Bestvina showed that Gromov’s construction does not lead to a word hyper-
bolic group; his argument is reproduced in BRADY, RILEY, and SHORT (2007, pp. 70–
71)).
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The question of the existence, inword hyperbolic groups, of subgroups of typeFn
and notFn+1 was explicitely raised by GERSTEN (1995, p. 130) (who uses the notation
FPn instead of the now established notation Fn). It was also stated by BRADY (1999,
question 7.1) who constructed finitely presented subgroups (hence of type F2) not
of type F3

(2). More examples of finitely presented and not F3 subgroups, elaborat-
ing on Brady’s construction and building on the Bestvina–Brady Morse theory (see
below section 4.4), were subsequently obtained by KROPHOLLER (2021), KROPHOLLER
and LLOSA ISENRICH (2023), and LOHDA (2018). LLOSA ISENRICH, MARTELLI, and PY
(2021) built the first example of a subgroup of type F3 and not F4 elaborating on a
fibration of a complete, finite volume, hyperbolic 8-manifold constructed in ITALIANO,
MARTELLI, and MIGLIORINI (2022) and gave examples of subgroups of type FPn(Q)

and not FPn+1(Q) in cubulable arithmetic lattices of the Lie group O(2n, 1).
Kernels of homomorphisms onto Z give examples of groups with intermediate

finiteness properties. For example the kernel of themorphism from the free group F2
onto Z mapping all the generators to 1 is not finitely generated; the kernel of the mor-
phism F2 ×F2 → Z sending every generator to 1 is finitely generated but not finitely
presented. STALLINGS (1963) gave the first example of a group of typeF2 (thus finitely
presented) that is not of type F3; it was later observed (GERSTEN, 1995) that this ex-
ample is isomorphic to the kernel of the morphism from (F2)

3 to Z sending every
generator to 1. For every positive integer n, the kernel of the similar homomorphism
from (F2)

n to Z is of type Fn−1 and not of type Fn (BIERI, 1976).
On the other hand, the question (answered thus negatively by theorem 1.2)

whether a subgroup of type F in a word hyperbolic group is itself hyperbolic can
be traced back to Bestvina’s problem list(3) and is also stated by BRADY (1999, ques-
tion 7.2). More recently the question appears in JANKIEWICZ, NORIN, and WISE (2021,
section 7). The techniques developed in this previous reference have been used by
ITALIANO, MARTELLI, and MIGLIORINI (2022; 2023) to construct fibrations of hyperbolic
manifolds over the circle and the fibration of a pseudo-manifold explained below in
section 4 that leads to theorem 1.2. Constructions of hyperbolic manifolds along the
same line were also proposed in KOLPAKOV and MARTELLI (2013) and KOLPAKOV and
SLAVICH (2016).

The related question whether a finitely presented subgroup of a word hyper-
bolic group of cohomological dimension 2 is itself hyperbolic has a positive answer
(GERSTEN, 1996). The similar question in dimension 3 or 4 (is it true that an F3,

(2)Brady asks the existence of a finitely presented subgroup of type FPn(Z) and not FPn+1(Z). However
for a finitely presented group, the implication FPn(Z) ⇒ Fn holds (a proof can be found in the proof of
theorem 7.1 in BROWN (1982, chapter VIII), it relies on the Hurewicz theorem), thus Brady’s question is
indeed Gersten’s question.
(3)Written in August 2000 and available at https://www.math.utah.edu/~bestvina/, retrieved on

January 12th 2024.
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resp. F4, subgroup of a hyperbolic group of cohomological dimension 3, resp. 4, is
hyperbolic) is still open. In dimension 5, theorem 1.2 provides a counter-example.

The discussion so far emphasizes morphisms onto Z. Central objects which
we will not discuss, but enable a finer understanding of the finiteness properties
of the kernels of these morphisms, are the Bieri–Neumann–Strebel invariant (BIERI,
NEUMANN, and STREBEL, 1987) and its higher degree relatives introduced by Renz
(BIERI and RENZ, 1988; RENZ, 1988, 1989) (the BNSR invariants). LLOSA ISENRICH and
PY (2023) give other constructions of subgroups of Kähler groups with exotic finite-
ness properties. Certain constructions usemorphisms to higher-rankAbelian groups
and are not amenable to the strategy we describe below, but rely on the BNSR in-
variants. Theorem 1.4 in the previous reference constructs subgroups of (not word
hyperbolic) Kähler groups with intermediate finiteness properties that are not nor-
mal and are themselves Kähler (the construction there involves fiber products rather
thanmorphisms). DIMCA, PAPADIMA, and SUCIU (2009) constructed the first examples
of Kähler groups with intermediate finiteness properties and their techniques (maps
to elliptic curves) were pushed further by others; we refer to LLOSA ISENRICH and PY
(2023, section 3.1) for a discussion as well as other references.

The ℓ2-homology also gives control on the BNSR invariants and onfiniteness prop-
erties of kernels. A consequence of a theorem of LÜCK (1998) implies that the kernel
of a surjective morphism G → Z has not type FPn(Q) as soon as the n-th ℓ2-Betti
number of G is nonzero. For the class of residually finite rationally solvable groups
(cf. AGOL, 2008, for a definition), KIELAK (2020, for the case n = 1) and FISHER (2022,
for the general case) proved that the ℓ2-Betti numbers of G vanish up to degree n if
and only if there is a surjective morphism G1 → Z with kernel of type FPn(Q)where
G1 is a finite index subgroup of G. This was involved in the result of LLOSA ISENRICH,
MARTELLI, and PY (2021) mentioned above.

3. A construction from complex geometry

Hereafter the article LLOSA ISENRICH and PY (2024) will be mentioned as LlP1 and the
article LLOSA ISENRICH and PY (2023) will be mentioned as LlP2.

In this sectionwe address theorem 1.1. The construction here has three steps. First
the kernels of rational cohomology classes of degree 1 coming from complex geom-
etry (precisely admitting a Morse representative that is the real part of a complex
differential formwith isolated zeros on a Kähler manifold) are shown to produce the
wanted example. Second finite-to-one maps to complex tori provide such cohomol-
ogy classes. Finally some arithmetic quotients of the unit ball in Cn immerse into
their Albanese varieties and thus admit finite-to-one maps to a complex torus. This
is the strategy developed in LlP1 with a simplification suggested in LlP2 (section 8)
avoiding the use of the BNSR invariants.
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3.1. Forms with isolated zeroes

Let X be a compact connected complex manifold. A closed holomorphic 1-form α

on X leads to a real differential form a = <α that represents an element in the first
cohomology group H1(X; R). When this form is rational, i.e. when the class of a be-
longs to H1(X; Q) = Hom(π1(X), Q), it gives rise to a homomorphism from π1(X)

onto a finitely generated subgroup of Q; hence, up to scaling, it is a surjective homo-
morphism from π1(X) onto Z. When X is aspherical and α has finitely many zeroes,
the kernel of this homomorphism has the desired exotic finiteness properties.

Proposition 3.1 (LlP1, theorem 6.(1)). Let X be a closed aspherical Kähler manifold of com-
plex dimension n ⩾ 2. Let α be a holomorphic 1-form on X with isolated zeroes and let
a = <α. Then there is a neighborhood U of the class of a in H1(X; R) such that for ev-
ery b in U ∩ H1(X; Q), the kernel of b is of type Fn−1. If furthermore X has nonzero Euler
characteristic, then the kernel of b is not of type FPn(Q).

Remark 3.2. Since X is Kähler and closed, holomorphic 1-forms are automatically
harmonic and consequently closed. Furthermore, from the Hodge decomposition,
the dimension of the space of holomorphic 1-forms is half the first Betti number.
Hence the assumption on X is of topological flavor.

A deformation argument (LlP2, section 6.2) shows that the class of a can be rep-
resented by a Morse 1-form (i.e. locally the differential of a Morse function) all of
whose critical points have index equal to n. This property will hold in a neighbor-
hood U of the class of a in H1(X; R) (LlP2, proposition 8.1). Let b be a rational form
in the open set U and choose β a differential form representing b.

The universal cover X̃ of X is a contractible manifold and the lift of β is the differ-
ential of a function X̃ → R. This function descends to a function f : X0 → R, where
X0 = X̃/ ker b is the cover associated with b. The space X0 is aspherical with funda-
mental group equal to ker b, thus the finiteness properties of ker b can be determined
from X0 or from spaces homotopically equivalent to X0. The function f is proper
and has isolated singularities all of index n. Therefore Morse–Lefschetz theory im-
plies that X0 has the homotopy type of a compact manifold (a regular fiber of f ) with
infinitely many n-cells attached (as soon as the form α has at least one zero, which is
ensured by the assumption on the Euler characteristic). This model for the classify-
ing space of the group ker b implies that ker b is indeed of type Fn−1. Using a long
exact sequence due to MILNOR (1968) associated with the cyclic covering X0 → X,
LLOSA ISENRICH, MARTELLI, and PY (2021, section 3.2) show that ker b is not of type
FPn(Q).
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