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AN APPLICATION OF THE EHRENFEUCHT-FRAISSfi GAME
IN FORMAL LANGUAGE THEORY

Wolfgang Thomas

Abstract A version of the Ehrenfreucht-Fraisse game is used to obtain
a new proof of a hierarchy result in formal language theory: It is
shown that the concatenation hierarchy ("dot-depth hierarchy") of
star-free languages is strict.

Resume Une version du jeu de Ehrenfeucht-Fraisse est appliquee pour
obtenir une nouvelle preuve d'un theoreme dans la theorie des-langages
formels: On montre que la hierarchic de concatenation ("dot-depth
hierarchy") deslangages sans etoile est stricte.

1 . Introduction.
The present paper is concerned with a connection between formal lang-
uage theory and model theory. We study a hierarchy of formal languages
{namely, the dot-depth hierarchy of star-free regular languages) using
logical notions such as quantifier complexity of first-order sentences.
In this context we apply a form of the Ehrenfeucht-Fraisse game which
serves to establish the elementary equivalence between structures with
respect to sentences of certain prefix types.

The class of star-free regular languages is of a very basic nature:
It consists of all languages (= word-sets) over a given alphabet A
which can be obtained from the finite languages by finitely many ap-
plications of boolean operations and the concatenation product. (For
technical reasons we consider only nonempty words over A , i . e .
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+languages L c A ; in particular, the complement operation is applied
w . r . t . A^) General references on the star-free regular languages are
McNaughton-Papert ( 1 9 7 1 ) , Chapter IX of Eilenberg ( 1 9 7 6 ) , or Pin
( 1 9 8 4 b ) .

A natural classification of the star-free regular languages is obtain-
ed by counting the "levels of concatenation" which are necessary to
build up such a language: For a fixed alphabet A , let

B.. = {LcA'^lL finite or cofinite),
B = { L c A |L is a boolean combination of languages

of the form L • . . . - L (n > 1 ) with L ^ , . . . , L ^ € B^} .

The language classes B , B , , . « . form the so-called dot-depth hierarchy
(or: Brzozowski hierarchy), introduced by Cohen/Brzozowski ( 1 9 7 1 ) . In
the framework of semigroup theory, Brzozowski/Knast ( 1 9 7 8 ) showed that
the hierarchy is infinite ( i . e . that B^ B^_^ for k > 1 ) . The aim of
the present paper is to give a new proof of this result, based on a
logical characterization of the hierarchy that was obtained in Tho-
mas ( 1 9 8 2 ) . The present proof does not rely on semigroup-theory; in-
stead, an intuitively appealing model-theoretic technique is applied:
the Ehrenfeucht-Fraisse game.

Let us first state the mentioned characterization.result, taking
A = { a , b } . One identifies any word W G A 4 ' , say of length n , with a
"word model"

w = ( { 1 , . . . , n } , < , m i n , m a x , S , P , Q ^ , Q ^ )
where the domain { 1 , . . . , n } represents the set of positions of letters
in the word w , ordered by < , where min and max are the first and
the last position, i . e . min = 1 and max=n, S and P are the succes-
sor and predecessor function on { 1 , . . . , n } with the convention that
S(max) =max and P(min) =min, and Q^Q^ are unary predicates over
{ 1 , . . . , n } containing the positions with letter a , b respectively.
(Sometimes it is convenient to assume that the position-sets of two
words u, v are disjoint; then one takes any two nonoverlapping seg-
ments of the integers as the position-sets of u and v . ) Let L be
the first-order language with equality and nonlogical symbols <,min,
m a x , S , P , Q , Q . . Then the satisfaction of an L- sentence tp in a word wa D * •
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(written: w t= ip) can be defined in a natural way, and we say that
L c: A is defined by the L-sentence tp if L == {w € A Iw^ ip} .

For example, the language L= (ab) is defined by

Q min A Q,max A Vy (y < max -• (Q y ̂  Q,S ( y ) ) ) .

As usual, a I,-formula is a formula in pr.enex normal form with a pre-
fix consisting of k alternating blocks of quantifiers, beginning
with a block of existential quantifiers. A B (£,)-formula is a boolean
combination of £,-formulas.

1 .1 Theorem. (Thomas ( 1 9 8 2 ) ) . Let k>0. A language L <= A belongs to
B iff L is defined by a B(£)-sentence of L.

For the formalization of properties of words the symbols min,max,S,P
are convenient. But of course they are definable in the restricted
first-order language L,. with the nonlogical constants <,Q ,Q, alone.u a JD
Indeed, we have:

1 .2 Lemma. Let k>0 . If L <= A is defined by a B (I,)-sentence of L,
then L is defined by a B (Z,^ )-sentence of L .

Proof. The quantifier-free kernel of a Z,-formula tp of L can be ex-
pressed both by a £..- and a n,--formula of L/.. For example, Q S(min)
is expressible in the following two ways:

(+) 3y(y=S(min) A Q^y) , Vy(y=S(min) -» Q^y)

where y = S (min) is rewritten as a II.-formula of L.. using

x = min <(—^ V z ( x = z v x < z ) , x = max <(-* V z ( z = x v z < x )
S (x) = y -^ (x = max A x = y ) v ( x < y A Vz~l (x < z A z < y) ) .

Hence we obtain a £, .-sentence of L- which is equivalent (in all
word-models) to tp by applying one of the two definitions in (+), dep-
ending on the case whether the innermost quantifier-block of cp is

existential or universal.

We mention without proof that (for k >0) the B(Z,)-sentences of L..
define exactly those languages L c: A which occur on the k-th level
of another hierarchy of star-free regular languages, introduced by
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Straubing ( 1 9 8 1 ) . For details concerning the Straubing hierarchy and
its relation to the Brzozowski hierarchy cf. Pin ( 1 9 8 4 a , b ) . The proof
to be given below also shows that the Straubing hierarchy is infinite.

2. The Example Languages

In order to show that B, ^ B , , for k > 1 , we introduce "example langu-
ages" L^rL^, L^ over A = { a , b } .

Let I w l (resp. I w l , ) denote the number of occurrences of the lettera -o
a (resp. b) in w , and define the weight l l w l l of a word w by

llwll I w l - I w l ,a b

In the sequel we write vcw if the word v is an initial segment

(left factor) of w . Let

L, = {wEA ' 1 " ! llwll = 0, V v c w 0<llvll <k, 3vcw llvll = k} ,

L^ = { w G A ' ^ ' 1 llwll = k, Vvcw 0<llvll <k} ,
.K

L = { w C A4 llwll = -k, Vvcw -k < llvll <0} .

To obtain a more intuitive picture of these languages, it is useful
to represent the letter a by the stroke / and b by \ . Then the
word abababa, for example, is represented by /\/\/\/ . Thus L^ con-
tains all words whose "graph" has the following properties: It ends
on the same level where it starts ("level O " ) , it is confined to level
0 and the next k levels, and it assumes the k-th level at least
once. Similarly for L 4', L, . The "typical shape" of words in L^, L^,
L," is indicated in the following diagrams:

level k i ^ ^

level 0

'k
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