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Abstract. — We consider regular solutions to the Navier-Stokes equation and pro-
vide an extension to the Escauriaza-Seregin-Sverak blow-up criterion in the negative
regularity Besov scale, with regularity arbitrarly close to −1. Our results rely on turn-
ing a priori bounds for the solution in negative Besov spaces into bounds in the positive
regularity scale.

Résumé (Estimations de bootstrap a priori pour Navier-Stokes). — On considère des
solutions régulières des équations de Navier-Stokes pour lesquelles on prouve une ex-
tension du critère d’explosion d’Escauriaza-Seregin-Sverak dans l’échelle des espaces de
Besov de régularité négative, arbitrairement proche de −1. Nos résultats reposent sur
l’amélioration d’estimations a priori en régularité négative pour devenir à régularité
positive.
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1. Introduction

We consider the incompressible Navier-Stokes equations in R3,

(NS)


∂tu = ∆u−∇ · (u⊗ u)−∇π,

div u = 0,

u|t=0 = u0

for (x, t) ∈ R3 × R+, where u = (ui(x, t))
3
i=1 ∈ R3 is the velocity vector field,

π(x, t) ∈ R is the associated pressure function and

∇ · (u⊗ u) :=
( d∑
j=1

∂xj (uiuj)
)d
i=1

.

In the pioneering work [11], J. Leray proved the existence of global turbulent
(weak in the modern terminology) solutions of (NS) for initial data with finite
kinetic energy, i.e. initial data in L2. These solutions need not be unique or
preserve regularity of the initial data. In this same work, J. Leray proved that
for regular enough initial data (namelyH1 initial data), a local (in time) unique
solution exists. He also proved that as long as this solution is regular enough,
it is unique among all the possible turbulent solutions, and moreover, if such a
turbulent solution satisfies

(1.1) u ∈ Lp([0, T [;Lq(R3)) with
2

p
+

3

q
= 1, q > 3,

then the solution remains regular on [0, T ] and can be extended beyond time T .
This is now known as Serrin’s criterion.

On the other hand, there is a long line of works on constructing local in
time solutions, from H. Fujita and T. Kato (see [9]) to H. Koch and D. Tataru
(see [10]). For these results, the main feature is that the initial data belongs
to spaces which are invariant under the scaling of the equations. Between [9]
and [10], T. Kato (see [8]) proved wellposedness of (NS) for initial data u0

in L3. In this framework of local in time (strong, e.g. unique) solutions, Serrin’s
criterion may be understood as a non blow-up criterion at time T : e.g. if u is a
strong solution with u0 ∈ L3(R3), that is u ∈ C([0, T [;L3(R3)), and if (1.1) is
satisfied, then one may (continuously and uniquely) extend the solution u past
time T .

In the recent important work [7], L. Escauriaza, G. Seregin and V. Šverák
obtained the endpoint version of Serrin’s criterion, using blow-up techniques
to construct a special solution vanishing at blow-up time and then backward
uniqueness to rule out its existence. Earlier work of Giga and Von Wahl proved
this endpoint under a continuity in time assumption in L3, and such a continuity
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result was recently improved to match the local in time theory by Cheskidov-
Shvydkoy [4].

Our first theorem (Theorem 1 below) may be seen as an extension of the end-
point criterion by Escauriaza-Seregin-Šverák, in the negative regularity scale.
Before providing an exact statement, we need to introduce a few notations and
definitions.

Since we are interested in smooth (or at least strong in the Kato sense)
solutions, (NS) is equivalent for our purpose with its integral formulation, where
the pressure has been disposed of with the projection operator P over divergence
free vector fields:

(1.2) u = S(t)u0 −
∫ t

0

PS(t− s)∇ · (u⊗ u)(s) ds = uL +B(u, u)

where S(t) = exp(tP∆) = P exp(t∆) is the Stokes flow (which is nothing but
the heat flow in R3 on divergence free vector fields) and B(u, u) is the Duhamel
term which reads, component wise

(1.3) B(f, g) = −
∫ t

0

RjRkRl|∇|S(t− s)(fg)(s) ds,

where the R(·) are the usual Riesz transforms (recall P is a Fourier multiplier
with matrix valued symbol Id−|ξ|−2ξ⊗ ξ). We will denote the Lebesgue norm
by

‖f‖p = ‖f‖Lp =

Å∫
R3

|f(x)|p dx
ã 1
p

.

Let us recall a definition of Besov spaces using the heat flow S(σ).

Definition 1.1. — Let Q(σ) = σ∂σS(σ). We define Ḃs,qp as the set of tem-
pered distributions f such that

– the integral
∫ N

1/N
Q(σ)f dσ/σ converges to f when N → +∞ as a tempered

distribution if s < d
p and after taking the quotient with polynomials if not,

and
– the function σ−s/2‖Q(σ)f‖p is in Lq(dσ/σ); its norm defines the Besov
norm of f :

(1.4) ‖f‖q
Ḃs,qp

=

∫ +∞

0

σ−sq/2‖Q(σ)f‖qp
dσ

σ
.

We recall that the usual (homogeneous) Sobolev spaces Ḣs, defined through
the Fourier transform by |ξ|sf̂(ξ) ∈ L2, may be identified with Ḃs,22 , while the
critical Sobolev embedding holds as follows: Ḃs,qp ↪→ Ḃρ,λr provided s − d/p =

ρ−d/r, s ≥ ρ and q ≤ λ, as well as Ḃs,qp ↪→ Lrx provided s−d/p = −d/r, s ≥ 0

and q ≤ r.
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We are now in a position to state our first result:

Theorem 1. — Let u be a local in time solution to (NS) such that u0 ∈ Ḣ1/2.
Assume that there exist p ∈]3,+∞[ and q < 2p′ such that

(1.5) sup
t∈[0,T [

‖u(·, t)‖
Ḃ

3/p−1,q
p

< +∞,

then the solution may be uniquely extended past time T .

We remark that our hypothesis allows for smooth, compactly supported
data; actually, one may simply assume that the vorticity ω0 = ∇ ∧ u0 belongs
to L3/2. By Sobolev embedding and the Biot-Savart law, this implies that u0

belongs to Ḣ
1
2 ⊂ Ḃ

3/p−1,2
p . Hence by local Cauchy theory so does u and (1.5)

is finite at least for small times.
It is of independent interest to consider the case of L3 data, without any

extra regularity hypothesis:

Theorem 2. — Let u be a local in time strong solution to (NS) with data u0

in L3 ∩ Ḃ3/p−1,q
p , with 3 < p < +∞ and q < 2p′. Assume that

(1.6) sup
t∈[0,T [

‖u(·, t)‖
Ḃ

3/p−1,q
p

< +∞,

then the solution may be uniquely extended past time T .

The restriction on q for the data implies that q < 3 as p > 3. As such,
our result does not include the L3 case, as we are still assuming a subtle decay
hypothesis through the q indice. However, the restriction is mostly technical and
all is required to lift it is to generalize the results from [6], most specifically
the compactness result which is only stated in L3 rather than in the Besov
scale. This will be adressed elsewhere, providing generalizations of the present
note and the results of [6]. Our purpose here is to illustrate that these blow
up criterions do not require positive regularity on the data; in fact, they will
extend to non L3 data into the negative Besov scale.

Both Theorem 1 and 2 rely crucially on improving the rather weak a priori
bound on u from the hypothesis. Such “self-improvements” are of independent
interest and we state examples of them below. We start with a (spatial) regular-
ity improvement for negative Besov-valued data (see the forthcoming Remark
2.7 on the p range restriction which is only technical).

Theorem 3. — Let u be a local in time strong solution to (NS) with data
u0 ∈ Ḃ3/p−1,q

p , with 3 < p < 6 and q < +∞. Assume that

(1.7) sup
t∈[0,T [

‖u(·, t)‖
Ḃ

3/p−1,∞
p

≤M,
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