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REMARKS ON YU’S ‘PROPERTYA’
FOR DISCRETE METRIC SPACES AND GROUPS

by Jean-Louis Tu

Abstract. — Guoliang Yu has introduced a property on discrete metric spaces and
groups, which is a weak form of amenability and which has important applications
to the Novikov conjecture and the coarse Baum–Connes conjecture. The aim of the
present paper is to prove that property in particular examples, like spaces with subex-
ponential growth, amalgamated free products of discrete groups having property A
and HNN extensions of discrete groups having property A.

Résumé (Remarques sur la propriété A de Yu pour les espaces métriques et les groupes
discrets)

Guoliang Yu a introduit une propriété sur les espaces métriques et les groupes
discrets, qui est une forme faible de moyennabilité et qui a d’importantes applications
à la conjecture de Novikov et la conjecture de Baum–Connes “coarse”. Le but de cet
article est de démontrer cette propriété dans des cas particuliers, tels que les espaces à
croissance sous-exponentielle, les produits libres amalgamés de groupes discrets ayant
la propriété A et les extensions HNN de groupes discrets ayant la propriété A.

1. Introduction

Let X be a discrete metric space. It is said to be of bounded geometry if
there exists N : R+ → R+ such that the number of elements in balls of given
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c© Société Mathématique de France



116 TU (J.-L.)

radius is uniformly bounded:

∀x ∈ X, #B(x, R) ≤ N(R).(1.1)

In [19, Definition 2.1], Yu introduces a property on discrete metric spaces he
calls property A, which is a weak form of amenability. It is shown in [10], [11],
[19] that

• For every discrete group G with a left-invariant distance such that the re-
sulting metric space has bounded geometry, G has property A if and only
if it admits an amenable action on some compact space (or, equivalently,
on its Stone-Čech compactification βG) [11, Theorem 3.3].

• With the same assumptions, if G has property A, then the Baum–Connes
map for G is split injective [10, Theorem 3.2], hence G satisfies the
Novikov Conjecture (see [3] for an introduction to the Baum–Connes
conjecture and its relation to the Novikov conjecture). Moreover, the
reduced group C∗-algebra C∗

r (G) is exact, meaning that for every exact
sequence of C∗-algebras

0 → J −→ A −→ A/J → 0,

the sequence obtained by taking spatial tensor products

0 → J ⊗min C∗
r (G) −→ A⊗min C∗

r (G) −→ A/J ⊗min C∗
r (G) → 0

is exact (see [17] for a survey on exactness).
• Every discrete metric space with bounded geometry with property A sat-

isfies the coarse Baum–Connes conjecture [19, Theorem 1.1] (see [13], [18]
for an introduction to that conjecture).

That such impressive consequences result from that elementary property (see
Definition 3.1) is quite remarkable. It was conjectured for a while that every
discrete metric space has property A, but Gromov recently announced the
construction of Cayley graphs that do not satisfy the property [7]. It remains
important to determine classes of metric spaces or groups for which the property
holds.

It is known that property A is true for amenable groups, semi-direct products
of groups that have property A, asymptotically finite dimensional metric spaces
with bounded geometry, hyperbolic groups in the sense of Gromov (see [8]). In
this paper, it is proven that property A is true in each of the following cases,
for a discrete metric space with bounded geometry X :

• X ⊂ Y , where Y is a metric space with property A;
• X has subexponential growth;
• X = Y1 ∪ Y2, where (Y1, Y2) is an excisive pair;
• X is hyperbolic in the sense of Gromov;
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• X is a group acting on a tree, such that the stabilizer of each vertex
has property A. In particular, property A for groups is stable by taking
amalgamated free products and HNN extensions.

We have tried in this paper to keep proofs as elementary and self-contained
as possible, hoping to spark the interest of a broad range of readers.

2. Basic definitions

Let us recall a few elementary definitions from [13].
A metric space is said to be proper if every closed ball is compact.
Let X and Y be metric spaces. A (not necessarily continuous) map

f : X → Y is said to be proper if the inverse image of any bounded set is
bounded, and it is coarse if it is proper and if for every R > 0, there exists
S > 0 such that for every x, x′ ∈ X , d(x, x′) ≤ R implies d(f(x), f(x′)) ≤ S.

Two coarse maps f , g : X → Y are bornotopic if there exists R > 0 such
that d(f(x), g(x)) ≤ R for every x ∈ X . A coarse map f : X → Y is a coarse
equivalence if there exists a coarse map g : Y → X such that f ◦ g and g ◦ f are
bornotopic to the identity; X and Y are then said to be coarsely equivalent.

Two distances d and d′ on X are coarsely equivalent if the identity (X, d) →
(X, d′) is a coarse equivalence.

A map f : X → Y is a uniform embedding if it induces a coarse equiva-
lence between X and f(X). This means that f is coarse, and that for every
R > 0, there exists S > 0 such that d(x, x′) ≥ S implies d(f(x), f(x′)) ≥ R
for all x, x′ ∈ X .

Lemma 2.1. — Let G be a countable discrete group. Then up to coarse equiv-
alence, there exists one and only one left-invariant distance on G for which the
resulting metric space has bounded geometry.

Proof. — Let e be the unit element in G. Let d and d′ be such distances, and
"(g) = d(g, e), "′(g) = d′(g, e) the associated length functions. Let R > 0.
Since #Bd(e, R) < ∞, there exists S > 0 such that for all g ∈ Bd(e, R),
"′(g) ≤ S. By the left invariance, IdG : (G, d) → (G, d′) is coarse. Similarly,
IdG : (G, d′) → (G, d) is coarse.

To prove the existence, let f : G → N∗ be a function such that f−1([0, n]) is
finite for every n, f(g) = f(g−1) for all g ∈ G, and f(g) = 0 iff g = 1. Let

"(g) = inf
{

f(g1) + · · · + f(gn) : g = g1 · · · gn

}

.

The distance d(g, h) = "(g−1h) is left-invariant and the resulting metric space
has bounded geometry.
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If the group is finitely generated, one can take the distance associated to
any finite system of generators. If G acts freely and co-compactly by isometries
on a proper metric space X , and x0 ∈ X is arbitrary, then one can take
d(g, h) = "(g−1h) where "(g) = d(gx0, x0).

3. Property A, equivalent definitions

This section presents a few equivalent definitions of the property A intro-
duced by Yu [19]. For a given metric space and R > 0, ∆R will denote

{

(x, y) ∈ X ×X : d(x, y) ≤ R
}

.

Definition 3.1. — (See [19, Definition 2.1].) A discrete metric space X is
said to have property A if for any R > 0, ε > 0, there exist S > 0 and a family
(Ax)x∈X of finite, nonempty subsets of X × N, such that

(i) (y, n) ∈ Ax implies (x, y) ∈ ∆S ;
(ii) for all (x, y) ∈ ∆R,

#(Ax∆Ay)
#(Ax ∩Ay)

≤ ε.

Let us first recall the definition of a positive type kernel [12, Definition 5.1].
Let X be a set. A function ϕ : X × X → R is said to be a positive type
kernel if ϕ(x, y) = ϕ(y, x) for all x, y ∈ X , and if for every finitely supported,
real-valued function (λx)x∈X on X , the following inequality holds:

∑

x,y∈X

λxλyϕ(x, y) ≥ 0.(3.1)

A function ϕ : X × X → R is of positive type if and only if there exists a
map x .→ ηx from X to a real Hilbert space H such that ϕ(x, y) = 〈ηx, ηy〉
[12, Proposition 5.3].

Equivalent definitions listed in the proposition below clearly show that prop-
erty A is a weak form of amenability. Indeed, (ii) and (iii) are Reiter’s property
(P1) and (P2) respectively, and (v) is Hulanicki’s property [5].

Proposition 3.2. — Let X be a discrete metric space with bounded geometry.
The following are equivalent:

(i) X has property A;
(ii) ∀R > 0, ∀ε > 0, ∃S > 0, ∃(ξx)x∈X , ξx ∈ "1(X), supp(ξx) ⊂ B(x, S),

‖ξx‖!1(X) = 1, and ‖ξx − ξy‖!1(X) ≤ ε whenever d(x, y) ≤ R;
(ii′) ∀R > 0, ∀ε > 0, ∃S > 0, ∃(χx)x∈X , χx ∈ "1(X), supp(χx) ⊂ B(x, S),

‖χx − χy‖!1(X)/‖χx‖!1(X) ≤ ε whenever d(x, y) ≤ R;
(iii) ∀R > 0, ∀ε > 0, ∃S > 0, ∃(ηx)x∈X, ηx ∈ "2(X), supp(ηx) ⊂ B(x, S),

‖ηx‖!2(X) = 1, and ‖ηx − ηy‖!2(X) ≤ ε whenever d(x, y) ≤ R;

tome 129 – 2001 – no 1



REMARKS ON YU’S PROPERTY A 119

(iv) ∀R > 0, ∀ε > 0, ∃S > 0, ∃(ζx)x∈X , ζx ∈ "2(X×N), supp(ζx) ⊂ B(x, S)×
N, ‖ζx‖!2(X×N) = 1, and ‖ζx − ζy‖!2(X×N) ≤ ε whenever d(x, y) ≤ R;

(v) ∀R > 0, ∀ε > 0, ∃S > 0, ∃ϕ : X × X → R of positive type such that
suppϕ ⊂ ∆S and |1− ϕ(x, y)| ≤ ε whenever d(x, y) ≤ R.

Proof. — (i)⇔ (ii): noting that in (ii), ξx may be supposed to be nonnegative
(since ‖|ξx|− |ξy|‖!1(X) ≤ ‖ξx − ξy‖!1(X)), this is exactly [11, Lemma 3.5].

(ii)⇒ (ii′): obvious.
(ii′)⇒ (ii): let χx as in (ii′). Let ξx = χx/‖χx‖!1(X). Then

‖ξx − ξy‖1 ≤
‖χx − χy‖1
‖χx‖1

+ ‖χy‖1
∣

∣

∣

1
‖χx‖1

− 1
‖χy‖1

∣

∣

∣

=
‖χx − χy‖1
‖χx‖1

+
|‖χy‖1 − ‖χx‖1|

‖χx‖1
≤ 2‖χx − χy‖1

‖χx‖1
·

(ii)⇒ (iii): let ξx as in (ii). Define ηx = |ξx|1/2. Then, denoting by
∫

X the
summation on X , i.e. the integral with counting measure on X , one has

‖ηx − ηy‖2!2(X) =
∫

X
|ηx − ηy|2

≤
∫

X
|η2x − η2y| =

∥

∥|ξx|− |ξy|
∥

∥

!1(X)
≤ ‖ξx − ξy‖!1(X).

(iii)⇒ (ii): Let ηx as in (iii). We can suppose that ηx ≥ 0. Let ξx = η2x.
Then by the Cauchy-Schwarz inequality,

‖ξx − ξy‖!1(X) =
∫

X
|η2x − η2y | =

∫

X
|ηx − ηy|(ηx + ηy)

≤ ‖ηx − ηy‖!2(X)‖ηx + ηy‖!2(X) ≤ 2‖ηx − ηy‖!2(X).

(iii)⇒ (iv): obvious.
(iv)⇒ (iii): Let ζx as in (iv). Let ηx(z) = ‖ζx(z, ·)‖!2(N). Then

‖ηx − ηy‖2!2(X) =
∑

z∈X

∣

∣‖ζx(z, ·)‖!2(N) − ‖ζy(z, ·)‖!2(N)

∣

∣

2

≤
∑

z∈X

∥

∥ζx(z, ·)− ζy(z, ·)
∥

∥

2

!2(X×N)
= ‖ζx − ζy‖2!2(X×N).

(iii)⇒ (v): Let ηx as in (iii). Let ϕ(x, y) = 〈ηx, ηy〉. Then suppϕ ⊂ ∆2S

and if d(x, y) ≤ R, then 1− ϕ(x, y) = 1
2‖ηx − ηy‖2!2(X) ≤

1
2ε

2.

(v)⇒ (iii) is inspired from [4], proof of Theorem 13.8.6. The parallel would
have been more apparent, had we introduced the concept of positive definite
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