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DIFFERENTIAL EQUATIONS

AND ALGEBRAIC TRANSCENDENTS:

FRENCH EFFORTS AT THE CREATION OF A GALOIS THEORY

OF DIFFERENTIAL EQUATIONS 1880–1910

Tom Archibald

Abstract. — A “Galois theory” of differential equations was first proposed by
Émile Picard in 1883. Picard, then a young mathematician in the course of mak-
ing his name, sought an analogue to Galois’s theory of polynomial equations
for linear differential equations with rational coefficients. His main results were
limited by unnecessary hypotheses, as was shown in 1892 by his student Ernest
Vessiot, who both improved Picard’s results and altered his approach, leading
Picard to assert that his lay closest to the path of Galois. The subject became
interesting to a number of French researchers in the next decade and more,
most importantly Jules Drach, whose flawed 1898 doctoral thesis led to a further
reworking of the subject by Vessiot. The present paper recounts these events,
looking at the tools created and at the interpretation of the Galois legacy man-
ifest in these different attempts.

Résumé (Équations différentielles et transcendants algébriques : les efforts
français sur la création d’une théorie de Galois pour les équations différen-
tielles 1880–1910)

Une « théorie de Galois » pour les équations différentielles a été créée
pour la première fois par Émile Picard en 1883. Picard, à cette époque un
jeune mathématicien qui cherchait faire une réputation, a façonné une théo-
rie analogue à celle des équations algébriques de Galois pour les équations
différentielles linéaires à coefficients rationnels. Ses résultats étaient limités
par des hypothèses superflues, un fait démontré en 1892 par son élève Ernest
Vessiot, qui a amélioré les résultats de Picard en modifiant son approche.
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Cette modification a mené Picard à affirmer que c’était son approche à lui qui
restait plus fidèle au chemin tracé par Galois. Le sujet a intéressé plusieurs
chercheurs en France dans les années qui suivirent, le plus important étant
Jules Drach, dont la thèse erronée de 1898 a provoqué encore une intervention
de Vessiot. Cet article relate ces évènements, en considérant les outils utilisés
et l’interprétation du legs de Galois manifestée dans une série d’efforts divers.

1. INTRODUCTION

The reception of the work of Évariste Galois on the solution of polyno-
mial equations, and the ways in which the name of Galois became emblem-
atic for a certain kind of mathematical creativity, make a complicated story.
In this paper we take on the question of what it meant in the context of
the study of differential equations. As the pervasive presence of groups in
mathematics dawned on at least some important researchers—Felix Klein,
Sophus Lie, Henri Poincaré—the idea of employing an analogous theory
for differential equations was enunciated by Poincaré’s associate Émile Pi-
card, whose first publication on the subject was in 1883. This was followed
by further work of Picard, Ernest Vessiot, Jules Drach, and other French
mathematicians, leading on the one hand to what has come to be called
the Picard-Vessiot theory, an object of renewed research interest in recent
years [Magid 1999]; and the “logical” integration theory of Drach. All three
of these writers claimed their own approach as being the true heir to the
essential ideas of Galois. In what follows we try to unpack what they meant
by this, why there was some divergence, and what the claim means about
values in mathematics and the relations between algebra and analysis in
the late nineteenth century.

It was to become a commonplace of twentieth-century mathematics to
pattern one theory on another, attempting to find analogous components
and then exploiting similarities of “structure” in order to find results. In-
deed, the structural turn has been described by Corry and others as char-
acteristic of much pure mathematics of the twentieth century, though the
idea of analogical building of theories is only one component of this ap-
proach [Corry 2004]. In fact, the notion of a mathematical theory was in
transition in the last decades of the nineteenth century, when the term was
used commonly in a non-technical way to denote a body of connected re-
sults on a single subject. Formal theories in the sense of Russell and others
were a construction that was to come in the future. Indicative of the way in
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which the term was used are the following remarks of Francesco Brioschi,
a senior observer describing what he sees as a modern tendency:

The characteristic note of modern progress in mathematical studies can
be recognized in the contribution that each special theory—that of functions,
of substitutions, of forms, of transcendents, geometrical theories and so on—
brings to the study of problems for which in other times only one seemed
necessary .. . France, which, following the disaster of 1870, drew from it new
and powerful scientific vitality, and has given proof of it in every realm of
knowledge, has not remained outside this movement.. .1 [Brioschi 1889, 72].

Despite the superficial resemblance between the problem of solving a
polynomial equation and that of solving an ordinary or partial differential
equation, the idea of creating a Galois theory for differential equations
faced formidable obstacles. In the case of the original Galois theory, one
starts with a polynomial equation. The theory relies on the correspon-
dence between a splitting field that is an algebraic extension of Q and
the automorphism group of the polynomial, that is, a subgroup of the
permutation group of the roots. The main theorem of the subject states
that if that group is solvable then the equation is solvable by radicals; this
requires the notion of normal subgroup, a key construct of the theory.
Yet the words with which we describe these objects easily now all emerged
with their present meaning during and after the period we are discussing.
In particular, the relationship between substitution groups (in the sense
of Camille Jordan’s 1870 treatise) and what Sophus Lie termed “trans-
formation groups” was seen by many writers (including Jordan and Lie)
as one of analogy rather than of identity of structure; and fundamental
features of today’s group concept (notably the presence of inverses) had
a problematic status. Similarly the notion of an entity called a field, while
adumbrated for example in Dedekind’s work, existed alongside the notion
of a slightly more fluid concept issuing from the work of Kronecker, the
domain of rationality. The shifting meanings of these terms and a resulting

1 “La nota caratteristica del progresso moderno degli studi matematici deve rintrac-
ciarsi nel contributo che ciascuna speciale teoria, quella delle funzioni, delle sosti-
tuzioni, delle forme, dei transcendenti, le geometriche e così via, porta nello studio
di problemi pel quale in altri tempi forse una sola fra esse sembrava necessaria ... La
Francia, la quale dalle sciagure del 1870 seppe ritirarre nuova e potente vitalità scien-
tifica, e ne ha dato ampie prove in ogni ramo dello scibile, non rimase estranea a quel
movimento ...”.
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vagueness in understanding the relationship between them pervades the
work that we shall discuss in what follows.2

Thus when we move to the context of differential equations, we are im-
mediately faced with a mass of difficulties. The “obvious” corresponding
object to the rationals is the field of rational functions (in one variable)
but since there is no result corresponding to the fundamental theorem of
algebra there is not an evident analogy to the splitting field. Other compli-
cations include the fact that in the case of a differential equation of order p
the set of solutions, far from finite, depends on up to p continuous param-
eters, and hence the groups involved would be continuous groups. This is
where Lie’s theory comes in: the analogy to the symmetric group of finite
permutations of roots is, in Lie’s work, the general linear group, and the
appropriate subgroups are those that leave the equation fixed while trans-
forming the solutions into each other (in which case the equation is usu-
ally described as admitting the transformation). Nothing here is as simple
as in the algebraic context, and the search for the appropriate analogous
structures was a large part of the struggle faced by the researcher.

Despite all this, in the years before 1880 many researchers had identified
specific points of analogy between the theory of polynomial equations and
those of linear differential equations, and this gave reason for optimism.
Euler’s complete solution of homogeneous linear equations with constant
coefficients through the very mechanism of looking at a closely analogous
polynomial equation dated from 1750 [Euler 1753]. Euler begins with a
linear ordinary differential equation of order n. Then “ante omnia ex ea
formetur haec expressio Algebraica P = A + Bz + Cz2 + Dz3 + Ez4+etc.
cuius quaeratur omnes factores simplices.. .”3. Here the algebraic charac-
ter of the analogy is made explicit—the expression P is repeatedly referred
to as an algebraic formula, with the word algebraic capitalized. The corre-
spondence is established between the order of the differential equation and
the degree of the associated polynomial employed as a tool in its solution.
(Euler in fact uses the same term, gradus, for both.)

By 1881, Paul Appell took up the question of the analogy in a context
remarkably close to that of Galois, seeking differential analogies to sym-
metric functions of the roots. In a two-page introduction, Appell gave an

2 It is worth noting that the French term “structure” was explicitly introduced in a
closely related context by one of the principal actors we discuss, Ernest Vessiot (1865-
1952), who used this word as a translation for Sophus Lie’s Zusammensetzung.[Hawkins
2000, 168], [Vessiot & de Tannenberg 1889, 137].
3 “... before anything else one forms from it this algebraic expression ... of which
all the simple factors are sought.”
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extended survey of earlier work that had explored other features of the
analogy between the two mathematical contexts [Appell 1881, 391-392], as-
pects of which were very well known in the Paris mathematical world of that
time. Appell mentions first Lagrange’s result that a reduction of order of a
linear differential equation is possible when a solution is known, analogous
to using a linear factor to reduce the degree of a polynomial equation. He
then rapidly lists work of Liouville, Libri, Frobenius and others, noting in
particular the idea of irreducibility of a differential equation due to Frobe-
nius. Much closer to home he notes recent work of Jules Tannery (from
1874) expounding and extending the work of Lazarus Fuchs on linear dif-
ferential equations; and the 1879 thesis of Gustave Floquet exploiting an
analogy with polynomials through the use of factorization of a differential
equation. These works made familiar the notion of a fundamental system
of n (linearly independent) solutions of a linear differential equation of
order n, an idea due to Fuchs, and demonstrated some of its utility.4 The
same year, 1879, saw two papers by E. Laguerre who discussed the ques-
tion of invariance of a linear differential equation under a transformation
of the variables [Laguerre 1879a], [Laguerre 1879b]. Thus Appell (and Pi-
card, soon to explore this path) entered into the study of the subject at a
time when such analogies were being actively and widely explored both in
France and elsewhere.

If y1; : : : ; yn is a fundamental system of solutions Appell’s own work iden-
tified the analogue of the symmetric functions of the roots:

the functions in question are polynomials in y1; : : : ; yn and their derivatives
which reappear multiplied by a non-zero constant when we replace y1; : : : ; yn
by the elements z1; : : : ; zN of another fundamental system, that is when we make
a linear substitution of the formyi = Ci1z1 + Ci2z2 + � � � + Cinzn : : :

5[Appell
1881, 392]

We see here the analogue of algebraic invariants in the presence of in-
variance up to a constant multiple. Appell’s key theorem states that every
such function for a monic linear differential equation of order n may be
expressed as an algebraic function of the coefficients multiplied by e�

R
a1dx

where a1 is the coefficient of the term of degree n�1. Without going into

4 Jordan used this idea around the same time, in [Jordan 1873/74], on a suggestion
by Hamburger. I thank F. Brechenmacher for this information.
5 “Les fonctions en question sont des fonctions algébriques entières de y1; : : : ; yn et
de leurs dérivées qui se reproduisent multipliées par un facteur constant différent
de zéro quand on remplace y1; : : : ; yn par les éléments z1; : : : ; zN d’un autre système
fondamental, c’est-à-dire quand on fait une substitution linéaire de la forme yi =
Ci1z1 + Ci2z2 + � � �+ Cinzn : : :
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